| 1 | #include "SphereHarm.hpp" | 
| 2 |  | 
| 3 | SphereHarm::SphereHarm( int bandWidth ){ | 
| 4 | bw = bandWidth; | 
| 5 |  | 
| 6 | /*** ASSUMING WILL SEMINAIVE ALL ORDERS ***/ | 
| 7 | cutoff = bw; | 
| 8 | size = 2*bw; | 
| 9 |  | 
| 10 | /* allocate memory */ | 
| 11 | rdata = (double *) fftw_malloc(sizeof(double) * (size * size)); | 
| 12 | idata = (double *) fftw_malloc(sizeof(double) * (size * size)); | 
| 13 | rcoeffs = (double *) fftw_malloc(sizeof(double) * (bw * bw)); | 
| 14 | icoeffs = (double *) fftw_malloc(sizeof(double) * (bw * bw)); | 
| 15 | weights = (double *) fftw_malloc(sizeof(double) * 4 * bw); | 
| 16 | seminaive_naive_tablespace = | 
| 17 | (double *) fftw_malloc(sizeof(double) * | 
| 18 | (Reduced_Naive_TableSize(bw,cutoff) + | 
| 19 | Reduced_SpharmonicTableSize(bw,cutoff))); | 
| 20 | workspace = (double *) fftw_malloc(sizeof(double) * | 
| 21 | ((8 * (bw*bw)) + | 
| 22 | (7 * bw))); | 
| 23 |  | 
| 24 |  | 
| 25 | /**** | 
| 26 | At this point, check to see if all the memory has been | 
| 27 | allocated. If it has not, there's no point in going further. | 
| 28 | ****/ | 
| 29 |  | 
| 30 | if ( (rdata == NULL) || (idata == NULL) || | 
| 31 | (rcoeffs == NULL) || (icoeffs == NULL) || | 
| 32 | (seminaive_naive_tablespace == NULL) || | 
| 33 | (workspace == NULL) ) | 
| 34 | { | 
| 35 | perror("Error in allocating memory"); | 
| 36 | exit( 1 ) ; | 
| 37 | } | 
| 38 |  | 
| 39 | //precompute the Legendres | 
| 40 | fprintf(stdout,"Precomputing the Legendres...\n"); | 
| 41 | seminaive_naive_table = SemiNaive_Naive_Pml_Table( bw, cutoff, | 
| 42 | seminaive_naive_tablespace, | 
| 43 | workspace ); | 
| 44 |  | 
| 45 | //construct fftw plans using the GURU interface | 
| 46 | /* forward DCT */ | 
| 47 | dctPlan = fftw_plan_r2r_1d( 2*bw, weights, rdata, | 
| 48 | FFTW_REDFT10, FFTW_ESTIMATE ) ; | 
| 49 |  | 
| 50 | /* | 
| 51 | fftw "preamble" ; | 
| 52 | note that this plan places the output in a transposed array | 
| 53 | */ | 
| 54 | rank = 1 ; | 
| 55 | dims[0].n = 2*bw ; | 
| 56 | dims[0].is = 1 ; | 
| 57 | dims[0].os = 2*bw ; | 
| 58 | howmany_rank = 1 ; | 
| 59 | howmany_dims[0].n = 2*bw ; | 
| 60 | howmany_dims[0].is = 2*bw ; | 
| 61 | howmany_dims[0].os = 1 ; | 
| 62 |  | 
| 63 | /* forward fft */ | 
| 64 | fftPlan = fftw_plan_guru_split_dft( rank, dims, | 
| 65 | howmany_rank, howmany_dims, | 
| 66 | rdata, idata, | 
| 67 | workspace, workspace+(4*bw*bw), | 
| 68 | FFTW_ESTIMATE ); | 
| 69 |  | 
| 70 | //make the weights | 
| 71 | makeweights( bw, weights ); | 
| 72 | } | 
| 73 |  | 
| 74 | SphereHarm::~SphereHarm(){ | 
| 75 | //free up memory | 
| 76 | fftw_destroy_plan( fftPlan ); | 
| 77 | fftw_destroy_plan( dctPlan ); | 
| 78 |  | 
| 79 | fftw_free(workspace); | 
| 80 | fftw_free(seminaive_naive_table); | 
| 81 | fftw_free(seminaive_naive_tablespace); | 
| 82 | fftw_free(weights); | 
| 83 | fftw_free(icoeffs); | 
| 84 | fftw_free(rcoeffs); | 
| 85 | fftw_free(idata); | 
| 86 | fftw_free(rdata); | 
| 87 | } | 
| 88 |  | 
| 89 | void SphereHarm::doTransforms(vector<double> gridData){ | 
| 90 | int i; | 
| 91 |  | 
| 92 | //load the data | 
| 93 | for (i=0; i<size*size; i++){ | 
| 94 | rdata[i] = gridData[i]; | 
| 95 | //our data is all real, so load the imaginary part with zeros | 
| 96 | idata[i] = 0.0; | 
| 97 | } | 
| 98 |  | 
| 99 | //do the forward spherical transform | 
| 100 | FST_semi_memo(rdata, idata, | 
| 101 | rcoeffs, icoeffs, | 
| 102 | bw, | 
| 103 | seminaive_naive_table, | 
| 104 | workspace, | 
| 105 | 0, | 
| 106 | cutoff, | 
| 107 | &dctPlan, | 
| 108 | &fftPlan, | 
| 109 | weights ); | 
| 110 | } | 
| 111 |  | 
| 112 | void SphereHarm::printShapesFileStart(char name[200], char particle[80], | 
| 113 | double mass, double momInert[3][3]){ | 
| 114 | ofstream shapes(name); | 
| 115 | shapes << "begin ShapeInfo\n"; | 
| 116 | shapes << "#name\t\tmass\tI_xx\tI_yy\tI_zz\n"; | 
| 117 | shapes << particle << "\t" << mass << "\t" << momInert[0][0] << "\t" | 
| 118 | << momInert[1][1] << "\t" << momInert[2][2] << "\n"; | 
| 119 | shapes << "end ShapeInfo\n"; | 
| 120 | } | 
| 121 |  | 
| 122 | void SphereHarm::printToShapesFile(char name[200], int index){ | 
| 123 | ofstream shapes(name, ios::app); | 
| 124 |  | 
| 125 | biggest = 0.0; | 
| 126 | nfuncs = 0; | 
| 127 | for ( l = 0 ; l < bw ; l++ ) { | 
| 128 | for (m = 0; m < l+1; m++) { | 
| 129 | dummy1 = seanindex(m, l, bw); | 
| 130 | dummy2 = seanindex(-m, l, bw); | 
| 131 |  | 
| 132 | if (m == 0) { | 
| 133 | cm = normFactor(l,m)*rcoeffs[dummy1]; | 
| 134 | sm = normFactor(l,m)*icoeffs[dummy1]; | 
| 135 | } else { | 
| 136 | cm = normFactor(l,m)*(pow(-1.0,(double)m)*rcoeffs[dummy1] | 
| 137 | + rcoeffs[dummy2]); | 
| 138 | sm = normFactor(l,m)*(pow(-1.0,(double)m)*icoeffs[dummy1] | 
| 139 | - icoeffs[dummy2]); | 
| 140 | } | 
| 141 |  | 
| 142 | if (fabs(cm) > biggest) biggest = fabs(cm); | 
| 143 | if (fabs(sm) > biggest) biggest = fabs(sm); | 
| 144 | } | 
| 145 | } | 
| 146 | for ( l = 0 ; l < bw ; l++ ) { | 
| 147 | for (m = 0; m < l+1; m++) { | 
| 148 | dummy1 = seanindex(m, l, bw); | 
| 149 | dummy2 = seanindex(-m, l, bw); | 
| 150 |  | 
| 151 | if (m == 0) { | 
| 152 | cm = normFactor(l,m)*rcoeffs[dummy1]; | 
| 153 | sm = normFactor(l,m)*icoeffs[dummy1]; | 
| 154 | } else { | 
| 155 | cm = normFactor(l,m)*(pow(-1.0,(double)m)*rcoeffs[dummy1] | 
| 156 | + rcoeffs[dummy2]); | 
| 157 | sm = normFactor(l,m)*(pow(-1.0,(double)m)*icoeffs[dummy1] | 
| 158 | - icoeffs[dummy2]); | 
| 159 | } | 
| 160 |  | 
| 161 | if (fabs(cm) > 0.01 * biggest) nfuncs++; | 
| 162 | if (fabs(sm) > 0.01 * biggest) nfuncs++; | 
| 163 | } | 
| 164 | } | 
| 165 |  | 
| 166 | switch(index){ | 
| 167 | case 0:{ | 
| 168 | shapes << "\nbegin ContactFunctions\n"; | 
| 169 | shapes << "#l\tm\tsin or cos\tcoeff (Ang)\n"; | 
| 170 | }; break; | 
| 171 | case 1:{ | 
| 172 | shapes << "\nbegin RangeFunctions\n"; | 
| 173 | shapes << "#l\tm\tsin or cos\tcoeff (Ang)\n"; | 
| 174 | }; break; | 
| 175 | case 2:{ | 
| 176 | shapes << "\nbegin StrengthFunctions\n"; | 
| 177 | shapes << "#l\tm\tsin or cos\tcoeff (kcal/mol)\n"; | 
| 178 | }; break; | 
| 179 | } | 
| 180 |  | 
| 181 | for ( l = 0 ; l < bw ; l++ ) { | 
| 182 | for (m = 0; m < l+1; m++) { | 
| 183 | dummy1 = seanindex(m, l, bw); | 
| 184 | dummy2 = seanindex(-m, l, bw); | 
| 185 |  | 
| 186 | if (m == 0) { | 
| 187 | cm = normFactor(l,m)*rcoeffs[dummy1]; | 
| 188 | sm = normFactor(l,m)*icoeffs[dummy1]; | 
| 189 | } else { | 
| 190 | cm = normFactor(l,m)*(pow(-1.0,(double)m)*rcoeffs[dummy1] | 
| 191 | + rcoeffs[dummy2]); | 
| 192 | sm = normFactor(l,m)*(pow(-1.0,(double)m)*icoeffs[dummy1] | 
| 193 | - icoeffs[dummy2]); | 
| 194 | } | 
| 195 |  | 
| 196 | if (fabs(cm) > 0.01 * biggest) | 
| 197 | shapes << l << "\t" << m << "\tcos\t\t" << cm << "\n"; | 
| 198 | if (fabs(sm) > 0.01 * biggest) | 
| 199 | shapes << l << "\t" << m << "\tsin\t\t" << sm << "\n"; | 
| 200 | } | 
| 201 | } | 
| 202 | switch(index){ | 
| 203 | case 0:{ | 
| 204 | shapes << "end ContactFunctions\n"; | 
| 205 | }; break; | 
| 206 | case 1:{ | 
| 207 | shapes << "end RangeFunctions\n"; | 
| 208 | }; break; | 
| 209 | case 2:{ | 
| 210 | shapes << "end StrengthFunctions\n"; | 
| 211 | }; break; | 
| 212 | } | 
| 213 | } | 
| 214 |  | 
| 215 | double SphereHarm::normFactor(int L, int M){ | 
| 216 | // normalization factor: | 
| 217 | if (L+M > 170){ | 
| 218 | printf("Warning: A coefficient was omitted because l + m > 170.\n" | 
| 219 | "\tThe double buffer overflows with factorial calculations\n" | 
| 220 | "\tof 170 and higher.  You should consider using a smaller\n" | 
| 221 | "\tbandwidth if you aren't okay with the loss of the %i, %i\n" | 
| 222 | "\tspherical harmonic.\n", L, M); | 
| 223 | return 0.0; | 
| 224 | } | 
| 225 | else | 
| 226 | return sqrt( (2*L+1)/(4.0*M_PI)*factorialFunc((double)(L-M)) | 
| 227 | / factorialFunc(double(L+M)) ); | 
| 228 | } | 
| 229 |  | 
| 230 | double SphereHarm::factorialFunc(double n) { | 
| 231 | if (n < 0.0) return NAN; | 
| 232 | else { | 
| 233 | if (n < 2.0) return 1.0; | 
| 234 | else | 
| 235 | return n*factorialFunc(n-1.0); | 
| 236 | } | 
| 237 | } |