| 1 | #include <stdio.h> | 
| 2 | #include <cmath> | 
| 3 | #include "SHFunc.hpp" | 
| 4 |  | 
| 5 | SHFunc::SHFunc() { | 
| 6 | } | 
| 7 |  | 
| 8 | double SHFunc::getValueAt(double costheta, double phi) { | 
| 9 |  | 
| 10 | double p, phase; | 
| 11 |  | 
| 12 | // associated Legendre polynomial | 
| 13 | p = LegendreP(L,M,costheta); | 
| 14 |  | 
| 15 | if (funcType == SH_SIN) { | 
| 16 | phase = sin((double)M * phi); | 
| 17 | } else { | 
| 18 | phase = cos((double)M * phi); | 
| 19 | } | 
| 20 |  | 
| 21 | return coefficient*p*phase; | 
| 22 |  | 
| 23 | } | 
| 24 | //-----------------------------------------------------------------------------// | 
| 25 | // | 
| 26 | // double LegendreP (int l, int m, double x); | 
| 27 | // | 
| 28 | // Computes the value of the associated Legendre polynomial P_lm (x) | 
| 29 | // of order l at a given point. | 
| 30 | // | 
| 31 | // Input: | 
| 32 | //   l  = degree of the polynomial  >= 0 | 
| 33 | //   m  = parameter satisfying 0 <= m <= l, | 
| 34 | //   x  = point in which the computation is performed, range -1 <= x <= 1. | 
| 35 | // Returns: | 
| 36 | //   value of the polynomial in x | 
| 37 | // | 
| 38 | //-----------------------------------------------------------------------------// | 
| 39 |  | 
| 40 | double SHFunc::LegendreP (int l, int m, double x) { | 
| 41 | // check parameters | 
| 42 | if (m < 0 || m > l || fabs(x) > 1.0) { | 
| 43 | printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 44 | return NAN; | 
| 45 | } | 
| 46 |  | 
| 47 | double pmm = 1.0; | 
| 48 | if (m > 0) { | 
| 49 | double h = sqrt((1.0-x)*(1.0+x)), | 
| 50 | f = 1.0; | 
| 51 | for (int i = 1; i <= m; i++) { | 
| 52 | pmm *= -f * h; | 
| 53 | f += 2.0; | 
| 54 | } | 
| 55 | } | 
| 56 | if (l == m) | 
| 57 | return pmm; | 
| 58 | else { | 
| 59 | double pmmp1 = x * (2 * m + 1) * pmm; | 
| 60 | if (l == (m+1)) | 
| 61 | return pmmp1; | 
| 62 | else { | 
| 63 | double pll = 0.0; | 
| 64 | for (int ll = m+2; ll <= l; ll++) { | 
| 65 | pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); | 
| 66 | pmm = pmmp1; | 
| 67 | pmmp1 = pll; | 
| 68 | } | 
| 69 | return pll; | 
| 70 | } | 
| 71 | } | 
| 72 | } | 
| 73 |  |