| 9 |
|
|
| 10 |
|
double f, p, phase; |
| 11 |
|
|
| 12 |
< |
// incredibly inefficient way to get the normalization, but |
| 13 |
< |
// we use a lookup table in the factorial code: |
| 12 |
> |
// incredibly inefficient way to get the normalization |
| 13 |
|
|
| 14 |
|
// normalization factor: |
| 15 |
< |
f = sqrt( (2*L+1)/(4.0*M_PI) * Fac(L-M) / Fac(L+M) ); |
| 15 |
> |
f = sqrt( (2*L+1)/(4.0*M_PI) * Fact(L-M) / Fact(L+M) ); |
| 16 |
|
// associated Legendre polynomial |
| 17 |
|
p = LegendreP(L,M,costheta); |
| 18 |
|
|
| 21 |
|
} else { |
| 22 |
|
phase = cos((double)M * phi); |
| 23 |
|
} |
| 25 |
– |
|
| 24 |
|
|
| 25 |
|
return coefficient*f*p*phase; |
| 26 |
|
|
| 75 |
|
} |
| 76 |
|
} |
| 77 |
|
|
| 78 |
< |
double SHFunc::Fac (int n) { |
| 78 |
> |
double SHFunc::Fact(double n) { |
| 79 |
|
|
| 80 |
< |
static double facn[31] = { |
| 81 |
< |
1.0, |
| 82 |
< |
1.0, |
| 83 |
< |
2.0, |
| 84 |
< |
6.0, |
| 87 |
< |
24.0, |
| 88 |
< |
120.0, |
| 89 |
< |
720.0, |
| 90 |
< |
5040.0, |
| 91 |
< |
40320.0, |
| 92 |
< |
362880.0, |
| 93 |
< |
3628800.0, |
| 94 |
< |
39916800.0, |
| 95 |
< |
479001600.0, |
| 96 |
< |
6227020800.0, |
| 97 |
< |
87178291200.0, |
| 98 |
< |
1.307674368e12, |
| 99 |
< |
2.0922789888e13, |
| 100 |
< |
3.55687428096e14, |
| 101 |
< |
6.402373705728e15, |
| 102 |
< |
1.21645100408832e17, |
| 103 |
< |
2.43290200817664e18, |
| 104 |
< |
5.109094217170944e19, |
| 105 |
< |
1.12400072777760768e21, |
| 106 |
< |
2.585201673888497664e22, |
| 107 |
< |
6.2044840173323943936e23, |
| 108 |
< |
1.5511210043330985984e25, |
| 109 |
< |
4.03291461126605635584e26, |
| 110 |
< |
1.0888869450418352160768e28, |
| 111 |
< |
3.04888344611713860501504e29, |
| 112 |
< |
8.841761993739701954543616e30, |
| 113 |
< |
2.6525285981219105863630848e32 |
| 114 |
< |
}; |
| 115 |
< |
|
| 116 |
< |
|
| 117 |
< |
static int nmax = 0; |
| 118 |
< |
static double xmin, xmax; |
| 119 |
< |
|
| 120 |
< |
if (n < 0) { |
| 121 |
< |
printf("factorial of negative integer undefined\n"); |
| 122 |
< |
return NAN; |
| 80 |
> |
if (n < 0.0) return NAN; |
| 81 |
> |
else { |
| 82 |
> |
if (n < 2.0) return 1.0; |
| 83 |
> |
else |
| 84 |
> |
return n*Fact(n-1.0); |
| 85 |
|
} |
| 86 |
|
|
| 125 |
– |
if (n <= 30) return facn[n]; |
| 126 |
– |
else { |
| 127 |
– |
printf("n is so large that Fac(n) will overflow\n"); |
| 128 |
– |
return NAN; |
| 129 |
– |
} |
| 87 |
|
} |