| 1 | #include <math.h> | 
| 2 | #include <iostream> | 
| 3 | #include "RigidBody.hpp" | 
| 4 | #include "VDWAtom.hpp" | 
| 5 | #include "MatVec3.h" | 
| 6 |  | 
| 7 | RigidBody::RigidBody() { | 
| 8 | is_linear = false; | 
| 9 | linear_axis =  -1; | 
| 10 | momIntTol = 1e-6; | 
| 11 | } | 
| 12 |  | 
| 13 | RigidBody::~RigidBody() { | 
| 14 | } | 
| 15 |  | 
| 16 | void RigidBody::addAtom(VDWAtom* at) { | 
| 17 |  | 
| 18 | vec3 coords; | 
| 19 |  | 
| 20 | myAtoms.push_back(at); | 
| 21 |  | 
| 22 | at->getPos(coords.vec); | 
| 23 | refCoords.push_back(coords); | 
| 24 | } | 
| 25 |  | 
| 26 | void RigidBody::getPos(double theP[3]){ | 
| 27 | for (int i = 0; i < 3 ; i++) | 
| 28 | theP[i] = pos[i]; | 
| 29 | } | 
| 30 |  | 
| 31 | void RigidBody::setPos(double theP[3]){ | 
| 32 | for (int i = 0; i < 3 ; i++) | 
| 33 | pos[i] = theP[i]; | 
| 34 | } | 
| 35 |  | 
| 36 |  | 
| 37 | void RigidBody::setEuler( double phi, double theta, double psi ){ | 
| 38 |  | 
| 39 | A[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); | 
| 40 | A[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); | 
| 41 | A[0][2] = sin(theta) * sin(psi); | 
| 42 |  | 
| 43 | A[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); | 
| 44 | A[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); | 
| 45 | A[1][2] = sin(theta) * cos(psi); | 
| 46 |  | 
| 47 | A[2][0] = sin(phi) * sin(theta); | 
| 48 | A[2][1] = -cos(phi) * sin(theta); | 
| 49 | A[2][2] = cos(theta); | 
| 50 |  | 
| 51 | } | 
| 52 |  | 
| 53 | void RigidBody::getQ( double q[4] ){ | 
| 54 |  | 
| 55 | double t, s; | 
| 56 | double ad1, ad2, ad3; | 
| 57 |  | 
| 58 | t = A[0][0] + A[1][1] + A[2][2] + 1.0; | 
| 59 | if( t > 0.0 ){ | 
| 60 |  | 
| 61 | s = 0.5 / sqrt( t ); | 
| 62 | q[0] = 0.25 / s; | 
| 63 | q[1] = (A[1][2] - A[2][1]) * s; | 
| 64 | q[2] = (A[2][0] - A[0][2]) * s; | 
| 65 | q[3] = (A[0][1] - A[1][0]) * s; | 
| 66 | } | 
| 67 | else{ | 
| 68 |  | 
| 69 | ad1 = fabs( A[0][0] ); | 
| 70 | ad2 = fabs( A[1][1] ); | 
| 71 | ad3 = fabs( A[2][2] ); | 
| 72 |  | 
| 73 | if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 74 |  | 
| 75 | s = 2.0 * sqrt( 1.0 + A[0][0] - A[1][1] - A[2][2] ); | 
| 76 | q[0] = (A[1][2] + A[2][1]) / s; | 
| 77 | q[1] = 0.5 / s; | 
| 78 | q[2] = (A[0][1] + A[1][0]) / s; | 
| 79 | q[3] = (A[0][2] + A[2][0]) / s; | 
| 80 | } | 
| 81 | else if( ad2 >= ad1 && ad2 >= ad3 ){ | 
| 82 |  | 
| 83 | s = sqrt( 1.0 + A[1][1] - A[0][0] - A[2][2] ) * 2.0; | 
| 84 | q[0] = (A[0][2] + A[2][0]) / s; | 
| 85 | q[1] = (A[0][1] + A[1][0]) / s; | 
| 86 | q[2] = 0.5 / s; | 
| 87 | q[3] = (A[1][2] + A[2][1]) / s; | 
| 88 | } | 
| 89 | else{ | 
| 90 |  | 
| 91 | s = sqrt( 1.0 + A[2][2] - A[0][0] - A[1][1] ) * 2.0; | 
| 92 | q[0] = (A[0][1] + A[1][0]) / s; | 
| 93 | q[1] = (A[0][2] + A[2][0]) / s; | 
| 94 | q[2] = (A[1][2] + A[2][1]) / s; | 
| 95 | q[3] = 0.5 / s; | 
| 96 | } | 
| 97 | } | 
| 98 | } | 
| 99 |  | 
| 100 | void RigidBody::setQ( double the_q[4] ){ | 
| 101 |  | 
| 102 | double q0Sqr, q1Sqr, q2Sqr, q3Sqr; | 
| 103 |  | 
| 104 | q0Sqr = the_q[0] * the_q[0]; | 
| 105 | q1Sqr = the_q[1] * the_q[1]; | 
| 106 | q2Sqr = the_q[2] * the_q[2]; | 
| 107 | q3Sqr = the_q[3] * the_q[3]; | 
| 108 |  | 
| 109 | A[0][0] = q0Sqr + q1Sqr - q2Sqr - q3Sqr; | 
| 110 | A[0][1] = 2.0 * ( the_q[1] * the_q[2] + the_q[0] * the_q[3] ); | 
| 111 | A[0][2] = 2.0 * ( the_q[1] * the_q[3] - the_q[0] * the_q[2] ); | 
| 112 |  | 
| 113 | A[1][0] = 2.0 * ( the_q[1] * the_q[2] - the_q[0] * the_q[3] ); | 
| 114 | A[1][1] = q0Sqr - q1Sqr + q2Sqr - q3Sqr; | 
| 115 | A[1][2] = 2.0 * ( the_q[2] * the_q[3] + the_q[0] * the_q[1] ); | 
| 116 |  | 
| 117 | A[2][0] = 2.0 * ( the_q[1] * the_q[3] + the_q[0] * the_q[2] ); | 
| 118 | A[2][1] = 2.0 * ( the_q[2] * the_q[3] - the_q[0] * the_q[1] ); | 
| 119 | A[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr; | 
| 120 |  | 
| 121 | } | 
| 122 |  | 
| 123 | void RigidBody::getA( double the_A[3][3] ){ | 
| 124 |  | 
| 125 | for (int i = 0; i < 3; i++) | 
| 126 | for (int j = 0; j < 3; j++) | 
| 127 | the_A[i][j] = A[i][j]; | 
| 128 |  | 
| 129 | } | 
| 130 |  | 
| 131 | void RigidBody::setA( double the_A[3][3] ){ | 
| 132 |  | 
| 133 | for (int i = 0; i < 3; i++) | 
| 134 | for (int j = 0; j < 3; j++) | 
| 135 | A[i][j] = the_A[i][j]; | 
| 136 |  | 
| 137 | } | 
| 138 |  | 
| 139 | void RigidBody::getI( double the_I[3][3] ){ | 
| 140 |  | 
| 141 | for (int i = 0; i < 3; i++) | 
| 142 | for (int j = 0; j < 3; j++) | 
| 143 | the_I[i][j] = I[i][j]; | 
| 144 |  | 
| 145 | } | 
| 146 |  | 
| 147 | void RigidBody::lab2Body( double r[3] ){ | 
| 148 |  | 
| 149 | double rl[3]; // the lab frame vector | 
| 150 |  | 
| 151 | rl[0] = r[0]; | 
| 152 | rl[1] = r[1]; | 
| 153 | rl[2] = r[2]; | 
| 154 |  | 
| 155 | r[0] = (A[0][0] * rl[0]) + (A[0][1] * rl[1]) + (A[0][2] * rl[2]); | 
| 156 | r[1] = (A[1][0] * rl[0]) + (A[1][1] * rl[1]) + (A[1][2] * rl[2]); | 
| 157 | r[2] = (A[2][0] * rl[0]) + (A[2][1] * rl[1]) + (A[2][2] * rl[2]); | 
| 158 |  | 
| 159 | } | 
| 160 |  | 
| 161 | void RigidBody::body2Lab( double r[3] ){ | 
| 162 |  | 
| 163 | double rb[3]; // the body frame vector | 
| 164 |  | 
| 165 | rb[0] = r[0]; | 
| 166 | rb[1] = r[1]; | 
| 167 | rb[2] = r[2]; | 
| 168 |  | 
| 169 | r[0] = (A[0][0] * rb[0]) + (A[1][0] * rb[1]) + (A[2][0] * rb[2]); | 
| 170 | r[1] = (A[0][1] * rb[0]) + (A[1][1] * rb[1]) + (A[2][1] * rb[2]); | 
| 171 | r[2] = (A[0][2] * rb[0]) + (A[1][2] * rb[1]) + (A[2][2] * rb[2]); | 
| 172 |  | 
| 173 | } | 
| 174 |  | 
| 175 | void RigidBody::calcRefCoords( ) { | 
| 176 |  | 
| 177 | int i, j, it, n_linear_coords, pAxis, maxAxis, midAxis; | 
| 178 | double mtmp; | 
| 179 | vec3 apos; | 
| 180 | double refCOM[3]; | 
| 181 | vec3 ptmp; | 
| 182 | double Itmp[3][3]; | 
| 183 | double pAxisMat[3][3], pAxisRotMat[3][3]; | 
| 184 | double evals[3]; | 
| 185 | double r, r2, len; | 
| 186 | double iMat[3][3]; | 
| 187 | double test[3]; | 
| 188 |  | 
| 189 | // First, find the center of mass: | 
| 190 |  | 
| 191 | mass = 0.0; | 
| 192 | for (j=0; j<3; j++) | 
| 193 | refCOM[j] = 0.0; | 
| 194 |  | 
| 195 | for (i = 0; i < myAtoms.size(); i++) { | 
| 196 | mtmp = myAtoms[i]->getMass(); | 
| 197 | mass += mtmp; | 
| 198 |  | 
| 199 | apos = refCoords[i]; | 
| 200 | for(j = 0; j < 3; j++) { | 
| 201 | refCOM[j] += apos[j]*mtmp; | 
| 202 | } | 
| 203 | } | 
| 204 |  | 
| 205 | for(j = 0; j < 3; j++) | 
| 206 | refCOM[j] /= mass; | 
| 207 |  | 
| 208 | // Next, move the origin of the reference coordinate system to the COM: | 
| 209 |  | 
| 210 | for (i = 0; i < myAtoms.size(); i++) { | 
| 211 | apos = refCoords[i]; | 
| 212 | for (j=0; j < 3; j++) { | 
| 213 | apos[j] = apos[j] - refCOM[j]; | 
| 214 | } | 
| 215 | refCoords[i] = apos; | 
| 216 | } | 
| 217 |  | 
| 218 | // Moment of Inertia calculation | 
| 219 |  | 
| 220 | for (i = 0; i < 3; i++) | 
| 221 | for (j = 0; j < 3; j++) | 
| 222 | Itmp[i][j] = 0.0; | 
| 223 |  | 
| 224 | for (it = 0; it < myAtoms.size(); it++) { | 
| 225 |  | 
| 226 | mtmp = myAtoms[it]->getMass(); | 
| 227 | ptmp = refCoords[it]; | 
| 228 | r= norm3(ptmp.vec); | 
| 229 | r2 = r*r; | 
| 230 |  | 
| 231 | for (i = 0; i < 3; i++) { | 
| 232 | for (j = 0; j < 3; j++) { | 
| 233 |  | 
| 234 | if (i==j) Itmp[i][j] += mtmp * r2; | 
| 235 |  | 
| 236 | Itmp[i][j] -= mtmp * ptmp.vec[i]*ptmp.vec[j]; | 
| 237 | } | 
| 238 | } | 
| 239 | } | 
| 240 |  | 
| 241 | diagonalize3x3(Itmp, evals, sU); | 
| 242 |  | 
| 243 | // zero out I and then fill the diagonals with the moments of inertia: | 
| 244 |  | 
| 245 | n_linear_coords = 0; | 
| 246 |  | 
| 247 | for (i = 0; i < 3; i++) { | 
| 248 | for (j = 0; j < 3; j++) { | 
| 249 | I[i][j] = 0.0; | 
| 250 | } | 
| 251 | I[i][i] = evals[i]; | 
| 252 |  | 
| 253 | if (fabs(evals[i]) < momIntTol) { | 
| 254 | is_linear = true; | 
| 255 | n_linear_coords++; | 
| 256 | linear_axis = i; | 
| 257 | } | 
| 258 | } | 
| 259 |  | 
| 260 | if (n_linear_coords > 1) { | 
| 261 | printf( | 
| 262 | "RigidBody error.\n" | 
| 263 | "\tSHAPES found more than one axis in this rigid body with a vanishing \n" | 
| 264 | "\tmoment of inertia.  This can happen in one of three ways:\n" | 
| 265 | "\t 1) Only one atom was specified, or \n" | 
| 266 | "\t 2) All atoms were specified at the same location, or\n" | 
| 267 | "\t 3) The programmers did something stupid.\n" | 
| 268 | "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n" | 
| 269 | ); | 
| 270 | exit(-1); | 
| 271 | } | 
| 272 |  | 
| 273 | // renormalize column vectors: | 
| 274 |  | 
| 275 | for (i=0; i < 3; i++) { | 
| 276 | len = 0.0; | 
| 277 | for (j = 0; j < 3; j++) { | 
| 278 | len += sU[i][j]*sU[i][j]; | 
| 279 | } | 
| 280 | len = sqrt(len); | 
| 281 | for (j = 0; j < 3; j++) { | 
| 282 | sU[i][j] /= len; | 
| 283 | } | 
| 284 | } | 
| 285 |  | 
| 286 | //sort and reorder the moment axes | 
| 287 |  | 
| 288 | // The only problem below is for molecules like C60 with 3 nearly identical | 
| 289 | // non-zero moments of inertia.  In this case it doesn't really matter which is | 
| 290 | // the principal axis, so they get assigned nearly randomly depending on the | 
| 291 | // floating point comparison between eigenvalues | 
| 292 | if (! is_linear) { | 
| 293 | pAxis = 0; | 
| 294 | maxAxis = 0; | 
| 295 |  | 
| 296 | for (i = 0; i < 3; i++) { | 
| 297 | if (evals[i] < evals[pAxis]) pAxis = i; | 
| 298 | if (evals[i] > evals[maxAxis]) maxAxis = i; | 
| 299 | } | 
| 300 |  | 
| 301 | midAxis = 0; | 
| 302 | for (i=0; i < 3; i++) { | 
| 303 | if (pAxis != i && maxAxis != i) midAxis = i; | 
| 304 | } | 
| 305 | } else { | 
| 306 | pAxis = linear_axis; | 
| 307 | // linear molecules have one zero moment of inertia and two identical | 
| 308 | // moments of inertia.  In this case, it doesn't matter which is chosen | 
| 309 | // as mid and which is max, so just permute from the pAxis: | 
| 310 | midAxis = (pAxis + 1)%3; | 
| 311 | maxAxis = (pAxis + 2)%3; | 
| 312 | } | 
| 313 |  | 
| 314 | //let z be the smallest and x be the largest eigenvalue axes | 
| 315 | for (i=0; i<3; i++){ | 
| 316 | pAxisMat[i][2] = sU[i][pAxis]; | 
| 317 | pAxisMat[i][1] = sU[i][midAxis]; | 
| 318 | pAxisMat[i][0] = sU[i][maxAxis]; | 
| 319 | } | 
| 320 |  | 
| 321 | //calculate the proper rotation matrix | 
| 322 | transposeMat3(pAxisMat, pAxisRotMat); | 
| 323 |  | 
| 324 |  | 
| 325 | //rotate the rigid body to the principle axis frame | 
| 326 | for (i = 0; i < myAtoms.size(); i++) { | 
| 327 | matVecMul3(pAxisRotMat, refCoords[i].vec, refCoords[i].vec); | 
| 328 | myAtoms[i]->setPos(refCoords[i].vec); | 
| 329 | } | 
| 330 |  | 
| 331 | identityMat3(iMat); | 
| 332 | setA(iMat); | 
| 333 | } | 
| 334 |  | 
| 335 | void RigidBody::doEulerToRotMat(double euler[3], double myA[3][3] ){ | 
| 336 |  | 
| 337 | double phi, theta, psi; | 
| 338 |  | 
| 339 | phi = euler[0]; | 
| 340 | theta = euler[1]; | 
| 341 | psi = euler[2]; | 
| 342 |  | 
| 343 | myA[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); | 
| 344 | myA[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); | 
| 345 | myA[0][2] = sin(theta) * sin(psi); | 
| 346 |  | 
| 347 | myA[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); | 
| 348 | myA[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); | 
| 349 | myA[1][2] = sin(theta) * cos(psi); | 
| 350 |  | 
| 351 | myA[2][0] = sin(phi) * sin(theta); | 
| 352 | myA[2][1] = -cos(phi) * sin(theta); | 
| 353 | myA[2][2] = cos(theta); | 
| 354 |  | 
| 355 | } | 
| 356 |  | 
| 357 | void RigidBody::updateAtoms() { | 
| 358 | int i, j; | 
| 359 | vec3 ref; | 
| 360 | double apos[3]; | 
| 361 |  | 
| 362 | for (i = 0; i < myAtoms.size(); i++) { | 
| 363 |  | 
| 364 | ref = refCoords[i]; | 
| 365 |  | 
| 366 | body2Lab(ref.vec); | 
| 367 |  | 
| 368 | for (j = 0; j<3; j++) | 
| 369 | apos[j] = pos[j] + ref.vec[j]; | 
| 370 |  | 
| 371 | myAtoms[i]->setPos(apos); | 
| 372 |  | 
| 373 | } | 
| 374 | } | 
| 375 |  | 
| 376 | /** | 
| 377 | * getEulerAngles computes a set of Euler angle values consistent | 
| 378 | * with an input rotation matrix.  They are returned in the following | 
| 379 | * order: | 
| 380 | *  myEuler[0] = phi; | 
| 381 | *  myEuler[1] = theta; | 
| 382 | *  myEuler[2] = psi; | 
| 383 | */ | 
| 384 | void RigidBody::getEulerAngles(double myEuler[3]) { | 
| 385 |  | 
| 386 | // We use so-called "x-convention", which is the most common | 
| 387 | // definition.  In this convention, the rotation given by Euler | 
| 388 | // angles (phi, theta, psi), where the first rotation is by an angle | 
| 389 | // phi about the z-axis, the second is by an angle theta (0 <= theta | 
| 390 | // <= 180) about the x-axis, and the third is by an angle psi about | 
| 391 | // the z-axis (again). | 
| 392 |  | 
| 393 |  | 
| 394 | double phi,theta,psi,eps; | 
| 395 | double ctheta; | 
| 396 | double stheta; | 
| 397 |  | 
| 398 | // set the tolerance for Euler angles and rotation elements | 
| 399 |  | 
| 400 | eps = 1.0e-8; | 
| 401 |  | 
| 402 | theta = acos(min(1.0,max(-1.0,A[2][2]))); | 
| 403 | ctheta = A[2][2]; | 
| 404 | stheta = sqrt(1.0 - ctheta * ctheta); | 
| 405 |  | 
| 406 | // when sin(theta) is close to 0, we need to consider the | 
| 407 | // possibility of a singularity. In this case, we can assign an | 
| 408 | // arbitary value to phi (or psi), and then determine the psi (or | 
| 409 | // phi) or vice-versa.  We'll assume that phi always gets the | 
| 410 | // rotation, and psi is 0 in cases of singularity.  we use atan2 | 
| 411 | // instead of atan, since atan2 will give us -Pi to Pi.  Since 0 <= | 
| 412 | // theta <= 180, sin(theta) will be always non-negative. Therefore, | 
| 413 | // it never changes the sign of both of the parameters passed to | 
| 414 | // atan2. | 
| 415 |  | 
| 416 | if (fabs(stheta) <= eps){ | 
| 417 | psi = 0.0; | 
| 418 | phi = atan2(-A[1][0], A[0][0]); | 
| 419 | } | 
| 420 | // we only have one unique solution | 
| 421 | else{ | 
| 422 | phi = atan2(A[2][0], -A[2][1]); | 
| 423 | psi = atan2(A[0][2], A[1][2]); | 
| 424 | } | 
| 425 |  | 
| 426 | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 427 | //if (phi < 0) | 
| 428 | //  phi += M_PI; | 
| 429 |  | 
| 430 | //if (psi < 0) | 
| 431 | //  psi += M_PI; | 
| 432 |  | 
| 433 | myEuler[0] = phi; | 
| 434 | myEuler[1] = theta; | 
| 435 | myEuler[2] = psi; | 
| 436 |  | 
| 437 | return; | 
| 438 | } | 
| 439 |  | 
| 440 | double RigidBody::max(double x, double  y) { | 
| 441 | return (x > y) ? x : y; | 
| 442 | } | 
| 443 |  | 
| 444 | double RigidBody::min(double x, double  y) { | 
| 445 | return (x > y) ? y : x; | 
| 446 | } | 
| 447 |  | 
| 448 | double RigidBody::findMaxExtent(){ | 
| 449 | int i; | 
| 450 | double refAtomPos[3]; | 
| 451 | double maxExtent; | 
| 452 | double tempExtent; | 
| 453 |  | 
| 454 | //zero the extent variables | 
| 455 | maxExtent = 0.0; | 
| 456 | tempExtent = 0.0; | 
| 457 | for (i=0; i<3; i++) | 
| 458 | refAtomPos[i] = 0.0; | 
| 459 |  | 
| 460 | //loop over all atoms | 
| 461 | for (i=0; i<myAtoms.size(); i++){ | 
| 462 | getAtomRefCoor(refAtomPos, i); | 
| 463 | tempExtent = sqrt(refAtomPos[0]*refAtomPos[0] + refAtomPos[1]*refAtomPos[1] | 
| 464 | + refAtomPos[2]*refAtomPos[2]); | 
| 465 | if (tempExtent > maxExtent) | 
| 466 | maxExtent = tempExtent; | 
| 467 | } | 
| 468 | return maxExtent; | 
| 469 | } | 
| 470 |  | 
| 471 | void RigidBody::findCOM() { | 
| 472 |  | 
| 473 | size_t i; | 
| 474 | int j; | 
| 475 | double mtmp; | 
| 476 | double ptmp[3]; | 
| 477 |  | 
| 478 | for(j = 0; j < 3; j++) { | 
| 479 | pos[j] = 0.0; | 
| 480 | } | 
| 481 | mass = 0.0; | 
| 482 |  | 
| 483 | for (i = 0; i < myAtoms.size(); i++) { | 
| 484 |  | 
| 485 | mtmp = myAtoms[i]->getMass(); | 
| 486 | myAtoms[i]->getPos(ptmp); | 
| 487 |  | 
| 488 | mass += mtmp; | 
| 489 |  | 
| 490 | for(j = 0; j < 3; j++) { | 
| 491 | pos[j] += ptmp[j]*mtmp; | 
| 492 | } | 
| 493 |  | 
| 494 | } | 
| 495 |  | 
| 496 | for(j = 0; j < 3; j++) { | 
| 497 | pos[j] /= mass; | 
| 498 | } | 
| 499 |  | 
| 500 | } | 
| 501 |  | 
| 502 | void RigidBody::getAtomPos(double theP[3], int index){ | 
| 503 | vec3 ref; | 
| 504 |  | 
| 505 | if (index >= myAtoms.size()) | 
| 506 | printf( "%d is an invalid index, current rigid body contains " | 
| 507 | "%d atoms\n", index, myAtoms.size()); | 
| 508 |  | 
| 509 | ref = refCoords[index]; | 
| 510 | body2Lab(ref.vec); | 
| 511 |  | 
| 512 | theP[0] = pos[0] + ref[0]; | 
| 513 | theP[1] = pos[1] + ref[1]; | 
| 514 | theP[2] = pos[2] + ref[2]; | 
| 515 | } | 
| 516 |  | 
| 517 |  | 
| 518 | void RigidBody::getAtomRefCoor(double pos[3], int index){ | 
| 519 | vec3 ref; | 
| 520 |  | 
| 521 | ref = refCoords[index]; | 
| 522 | pos[0] = ref[0]; | 
| 523 | pos[1] = ref[1]; | 
| 524 | pos[2] = ref[2]; | 
| 525 |  | 
| 526 | } | 
| 527 |  | 
| 528 | double RigidBody::getAtomRpar(int index){ | 
| 529 |  | 
| 530 | return myAtoms[index]->getRpar(); | 
| 531 |  | 
| 532 | } | 
| 533 |  | 
| 534 | double RigidBody::getAtomEps(int index){ | 
| 535 |  | 
| 536 | return myAtoms[index]->getEps(); | 
| 537 |  | 
| 538 | } | 
| 539 |  | 
| 540 | char *RigidBody::getAtomBase(int index){ | 
| 541 |  | 
| 542 | return myAtoms[index]->getBase(); | 
| 543 |  | 
| 544 | } |