1 |
|
#include <math.h> |
2 |
+ |
#include <iostream> |
3 |
|
#include "RigidBody.hpp" |
4 |
|
#include "VDWAtom.hpp" |
5 |
|
#include "MatVec3.h" |
174 |
|
|
175 |
|
void RigidBody::calcRefCoords( ) { |
176 |
|
|
177 |
< |
int i, j, it, n_linear_coords; |
177 |
> |
int i, j, it, n_linear_coords, pAxis, maxAxis, midAxis; |
178 |
|
double mtmp; |
179 |
|
vec3 apos; |
180 |
|
double refCOM[3]; |
181 |
|
vec3 ptmp; |
182 |
|
double Itmp[3][3]; |
183 |
+ |
double pAxisMat[3][3], pAxisRotMat[3][3]; |
184 |
|
double evals[3]; |
185 |
|
double r, r2, len; |
186 |
< |
|
186 |
> |
double iMat[3][3]; |
187 |
> |
double test[3]; |
188 |
> |
|
189 |
|
// First, find the center of mass: |
190 |
|
|
191 |
|
mass = 0.0; |
197 |
|
mass += mtmp; |
198 |
|
|
199 |
|
apos = refCoords[i]; |
196 |
– |
|
200 |
|
for(j = 0; j < 3; j++) { |
201 |
|
refCOM[j] += apos[j]*mtmp; |
202 |
|
} |
260 |
|
if (n_linear_coords > 1) { |
261 |
|
printf( |
262 |
|
"RigidBody error.\n" |
263 |
< |
"\tOOPSE found more than one axis in this rigid body with a vanishing \n" |
263 |
> |
"\tSHAPES found more than one axis in this rigid body with a vanishing \n" |
264 |
|
"\tmoment of inertia. This can happen in one of three ways:\n" |
265 |
|
"\t 1) Only one atom was specified, or \n" |
266 |
|
"\t 2) All atoms were specified at the same location, or\n" |
269 |
|
); |
270 |
|
exit(-1); |
271 |
|
} |
272 |
< |
|
272 |
> |
|
273 |
|
// renormalize column vectors: |
274 |
|
|
275 |
|
for (i=0; i < 3; i++) { |
282 |
|
sU[i][j] /= len; |
283 |
|
} |
284 |
|
} |
285 |
+ |
|
286 |
+ |
//sort and reorder the moment axes |
287 |
+ |
|
288 |
+ |
// The only problem below is for molecules like C60 with 3 nearly identical |
289 |
+ |
// non-zero moments of inertia. In this case it doesn't really matter which is |
290 |
+ |
// the principal axis, so they get assigned nearly randomly depending on the |
291 |
+ |
// floating point comparison between eigenvalues |
292 |
+ |
if (! is_linear) { |
293 |
+ |
pAxis = 0; |
294 |
+ |
maxAxis = 0; |
295 |
+ |
|
296 |
+ |
for (i = 0; i < 3; i++) { |
297 |
+ |
if (evals[i] < evals[pAxis]) pAxis = i; |
298 |
+ |
if (evals[i] > evals[maxAxis]) maxAxis = i; |
299 |
+ |
} |
300 |
+ |
|
301 |
+ |
midAxis = 0; |
302 |
+ |
for (i=0; i < 3; i++) { |
303 |
+ |
if (pAxis != i && maxAxis != i) midAxis = i; |
304 |
+ |
} |
305 |
+ |
} else { |
306 |
+ |
pAxis = linear_axis; |
307 |
+ |
// linear molecules have one zero moment of inertia and two identical |
308 |
+ |
// moments of inertia. In this case, it doesn't matter which is chosen |
309 |
+ |
// as mid and which is max, so just permute from the pAxis: |
310 |
+ |
midAxis = (pAxis + 1)%3; |
311 |
+ |
maxAxis = (pAxis + 2)%3; |
312 |
+ |
} |
313 |
+ |
|
314 |
+ |
//let z be the smallest and x be the largest eigenvalue axes |
315 |
+ |
for (i=0; i<3; i++){ |
316 |
+ |
pAxisMat[i][2] = sU[i][pAxis]; |
317 |
+ |
pAxisMat[i][1] = sU[i][midAxis]; |
318 |
+ |
pAxisMat[i][0] = sU[i][maxAxis]; |
319 |
+ |
} |
320 |
+ |
|
321 |
+ |
//calculate the proper rotation matrix |
322 |
+ |
transposeMat3(pAxisMat, pAxisRotMat); |
323 |
+ |
|
324 |
+ |
|
325 |
+ |
//rotate the rigid body to the principle axis frame |
326 |
+ |
for (i = 0; i < myAtoms.size(); i++) { |
327 |
+ |
matVecMul3(pAxisRotMat, refCoords[i].vec, refCoords[i].vec); |
328 |
+ |
myAtoms[i]->setPos(refCoords[i].vec); |
329 |
+ |
} |
330 |
+ |
|
331 |
+ |
identityMat3(iMat); |
332 |
+ |
setA(iMat); |
333 |
|
} |
334 |
|
|
335 |
|
void RigidBody::doEulerToRotMat(double euler[3], double myA[3][3] ){ |
524 |
|
pos[2] = ref[2]; |
525 |
|
|
526 |
|
} |
527 |
+ |
|
528 |
+ |
double RigidBody::getAtomRpar(int index){ |
529 |
+ |
|
530 |
+ |
return myAtoms[index]->getRpar(); |
531 |
+ |
|
532 |
+ |
} |
533 |
+ |
|
534 |
+ |
double RigidBody::getAtomEps(int index){ |
535 |
+ |
|
536 |
+ |
return myAtoms[index]->getEps(); |
537 |
+ |
|
538 |
+ |
} |