| 25 |
|
|
| 26 |
|
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, |
| 27 |
|
vector<double> epsGrid){ |
| 28 |
+ |
ofstream sigmaOut("sigma.grid"); |
| 29 |
+ |
ofstream sOut("s.grid"); |
| 30 |
+ |
ofstream epsOut("eps.grid"); |
| 31 |
|
double startDist; |
| 32 |
|
double minDist = 10.0; //minimum start distance |
| 33 |
|
|
| 34 |
+ |
sList = sGrid; |
| 35 |
+ |
sigList = sigmaGrid; |
| 36 |
+ |
epsList = epsGrid; |
| 37 |
|
forcefield = forceField; |
| 38 |
|
|
| 39 |
|
//first determine the start distance - we always start at least minDist away |
| 40 |
|
startDist = rbMol->findMaxExtent() + minDist; |
| 41 |
|
if (startDist < minDist) |
| 42 |
|
startDist = minDist; |
| 43 |
< |
|
| 43 |
> |
|
| 44 |
|
initBody(); |
| 45 |
< |
for (i=0; i<bandwidth; i++){ |
| 45 |
> |
for (k=0; k<bandwidth; k++){ |
| 46 |
> |
printf("step theta...\n"); |
| 47 |
|
for (j=0; j<bandwidth; j++){ |
| 48 |
|
releaseProbe(startDist); |
| 49 |
|
|
| 50 |
< |
sigmaGrid.push_back(sigDist); |
| 51 |
< |
sGrid.push_back(sDist); |
| 52 |
< |
epsGrid.push_back(epsVal); |
| 50 |
> |
sigList.push_back(sigDist); |
| 51 |
> |
sList.push_back(sDist); |
| 52 |
> |
epsList.push_back(epsVal); |
| 53 |
|
|
| 54 |
|
stepPhi(phiStep); |
| 55 |
|
} |
| 56 |
|
stepTheta(thetaStep); |
| 57 |
|
} |
| 58 |
+ |
/* |
| 59 |
+ |
//write out the grid files |
| 60 |
+ |
printf("the grid size is %d\n",sigmaGrid.size()); |
| 61 |
+ |
for (k=0; k<sigmaGrid.size(); k++){ |
| 62 |
+ |
sigmaOut << sigmaGrid[k] << "\n0\n"; |
| 63 |
+ |
sOut << sGrid[k] << "\n0\n"; |
| 64 |
+ |
epsOut << epsGrid[k] << "\n0\n"; |
| 65 |
+ |
} |
| 66 |
+ |
*/ |
| 67 |
|
} |
| 68 |
|
|
| 69 |
|
void GridBuilder::initBody(){ |
| 122 |
|
} |
| 123 |
|
|
| 124 |
|
void GridBuilder::calcEnergy(){ |
| 125 |
< |
|
| 126 |
< |
} |
| 125 |
> |
double rXij, rYij, rZij; |
| 126 |
> |
double rijSquared; |
| 127 |
> |
double rValSquared, rValPowerSix; |
| 128 |
> |
double rparHe, epsHe; |
| 129 |
> |
double atomRpar, atomEps; |
| 130 |
> |
double rbAtomPos[3]; |
| 131 |
> |
|
| 132 |
> |
//first get the probe atom parameters |
| 133 |
> |
switch(forcefield){ |
| 134 |
> |
case 1:{ |
| 135 |
> |
rparHe = 1.4800; |
| 136 |
> |
epsHe = -0.021270; |
| 137 |
> |
}; break; |
| 138 |
> |
case 2:{ |
| 139 |
> |
rparHe = 1.14; |
| 140 |
> |
epsHe = 0.0203; |
| 141 |
> |
}; break; |
| 142 |
> |
case 3:{ |
| 143 |
> |
rparHe = 2.28; |
| 144 |
> |
epsHe = 0.020269601874; |
| 145 |
> |
}; break; |
| 146 |
> |
case 4:{ |
| 147 |
> |
rparHe = 2.5560; |
| 148 |
> |
epsHe = 0.0200; |
| 149 |
> |
}; break; |
| 150 |
> |
case 5:{ |
| 151 |
> |
rparHe = 1.14; |
| 152 |
> |
epsHe = 0.0203; |
| 153 |
> |
}; break; |
| 154 |
> |
} |
| 155 |
> |
|
| 156 |
> |
potEnergy = 0.0; |
| 157 |
> |
|
| 158 |
> |
for(i=0; i<rbMol->getNumAtoms(); i++){ |
| 159 |
> |
rbMol->getAtomPos(rbAtomPos, i); |
| 160 |
> |
|
| 161 |
> |
rXij = rbAtomPos[0]; |
| 162 |
> |
rYij = rbAtomPos[1]; |
| 163 |
> |
rZij = rbAtomPos[2] - probeCoor; |
| 164 |
> |
|
| 165 |
> |
rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; |
| 166 |
> |
|
| 167 |
> |
//in the interest of keeping the code more compact, we are being less efficient by placing |
| 168 |
> |
//a switch statement in the calculation loop |
| 169 |
> |
switch(forcefield){ |
| 170 |
> |
case 1:{ |
| 171 |
> |
//we are using the CHARMm force field |
| 172 |
> |
atomRpar = rbMol->getAtomRpar(i); |
| 173 |
> |
atomEps = rbMol->getAtomEps(i); |
| 174 |
> |
|
| 175 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
| 176 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
| 177 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
| 178 |
> |
}; break; |
| 179 |
> |
|
| 180 |
> |
case 2:{ |
| 181 |
> |
//we are using the AMBER force field |
| 182 |
> |
atomRpar = rbMol->getAtomRpar(i); |
| 183 |
> |
atomEps = rbMol->getAtomEps(i); |
| 184 |
> |
|
| 185 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
| 186 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
| 187 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
| 188 |
> |
}; break; |
| 189 |
> |
|
| 190 |
> |
case 3:{ |
| 191 |
> |
//we are using Allen-Tildesley LJ parameters |
| 192 |
> |
atomRpar = rbMol->getAtomRpar(i); |
| 193 |
> |
atomEps = rbMol->getAtomEps(i); |
| 194 |
> |
|
| 195 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared); |
| 196 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
| 197 |
> |
potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
| 198 |
> |
|
| 199 |
> |
}; break; |
| 200 |
> |
|
| 201 |
> |
|
| 202 |
> |
case 4:{ |
| 203 |
> |
//we are using the OPLS force field |
| 204 |
> |
atomRpar = rbMol->getAtomRpar(i); |
| 205 |
> |
atomEps = rbMol->getAtomEps(i); |
| 206 |
> |
|
| 207 |
> |
rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared); |
| 208 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
| 209 |
> |
potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
| 210 |
> |
}; break; |
| 211 |
> |
|
| 212 |
> |
case 5:{ |
| 213 |
> |
//we are using the GAFF force field |
| 214 |
> |
atomRpar = rbMol->getAtomRpar(i); |
| 215 |
> |
atomEps = rbMol->getAtomEps(i); |
| 216 |
> |
|
| 217 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
| 218 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
| 219 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
| 220 |
> |
}; break; |
| 221 |
> |
} |
| 222 |
> |
} |
| 223 |
> |
} |
| 224 |
|
|
| 225 |
|
void GridBuilder::stepTheta(double increment){ |
| 226 |
|
//zero out the euler angles |
| 227 |
< |
for (i=0; i<3; i++) |
| 227 |
> |
for (l=0; l<3; l++) |
| 228 |
|
angles[i] = 0.0; |
| 229 |
|
|
| 230 |
|
//the second euler angle is for rotation about the x-axis (we use the zxz convention) |
| 241 |
|
|
| 242 |
|
void GridBuilder::stepPhi(double increment){ |
| 243 |
|
//zero out the euler angles |
| 244 |
< |
for (i=0; i<3; i++) |
| 244 |
> |
for (l=0; l<3; l++) |
| 245 |
|
angles[i] = 0.0; |
| 246 |
|
|
| 247 |
|
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
| 255 |
|
matMul3(rotZ, rbMatrix, rotatedMat); |
| 256 |
|
rbMol->setA(rotatedMat); |
| 257 |
|
} |
| 258 |
+ |
|
| 259 |
+ |
void GridBuilder::printGridFiles(){ |
| 260 |
+ |
ofstream sigmaOut("sigma.grid"); |
| 261 |
+ |
ofstream sOut("s.grid"); |
| 262 |
+ |
ofstream epsOut("eps.grid"); |
| 263 |
+ |
|
| 264 |
+ |
for (k=0; k<sigList.size(); k++){ |
| 265 |
+ |
sigmaOut << sigList[k] << "\n0\n"; |
| 266 |
+ |
sOut << sList[k] << "\n0\n"; |
| 267 |
+ |
epsOut << epsList[k] << "\n0\n"; |
| 268 |
+ |
} |
| 269 |
+ |
} |