| 25 | 
  | 
 | 
| 26 | 
  | 
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, | 
| 27 | 
  | 
                              vector<double> epsGrid){ | 
| 28 | 
+ | 
  ofstream sigmaOut("sigma.grid"); | 
| 29 | 
+ | 
  ofstream sOut("s.grid"); | 
| 30 | 
+ | 
  ofstream epsOut("eps.grid"); | 
| 31 | 
  | 
  double startDist; | 
| 32 | 
  | 
  double minDist = 10.0; //minimum start distance | 
| 33 | 
  | 
         | 
| 34 | 
+ | 
  sList = sGrid; | 
| 35 | 
+ | 
  sigList = sigmaGrid; | 
| 36 | 
+ | 
  epsList = epsGrid; | 
| 37 | 
  | 
  forcefield = forceField; | 
| 38 | 
  | 
     | 
| 39 | 
  | 
  //first determine the start distance - we always start at least minDist away | 
| 40 | 
  | 
  startDist = rbMol->findMaxExtent() + minDist; | 
| 41 | 
  | 
  if (startDist < minDist) | 
| 42 | 
  | 
    startDist = minDist; | 
| 43 | 
< | 
         | 
| 43 | 
> | 
 | 
| 44 | 
  | 
  initBody(); | 
| 45 | 
< | 
  for (i=0; i<bandwidth; i++){           | 
| 45 | 
> | 
  for (k=0; k<bandwidth; k++){           | 
| 46 | 
> | 
    printf("step theta...\n"); | 
| 47 | 
  | 
    for (j=0; j<bandwidth; j++){ | 
| 48 | 
  | 
      releaseProbe(startDist); | 
| 49 | 
  | 
 | 
| 50 | 
< | 
      sigmaGrid.push_back(sigDist); | 
| 51 | 
< | 
      sGrid.push_back(sDist); | 
| 52 | 
< | 
      epsGrid.push_back(epsVal); | 
| 50 | 
> | 
      sigList.push_back(sigDist); | 
| 51 | 
> | 
      sList.push_back(sDist); | 
| 52 | 
> | 
      epsList.push_back(epsVal); | 
| 53 | 
  | 
                         | 
| 54 | 
  | 
      stepPhi(phiStep); | 
| 55 | 
  | 
    } | 
| 56 | 
  | 
    stepTheta(thetaStep); | 
| 57 | 
  | 
  }              | 
| 58 | 
+ | 
  /* | 
| 59 | 
+ | 
  //write out the grid files | 
| 60 | 
+ | 
  printf("the grid size is %d\n",sigmaGrid.size()); | 
| 61 | 
+ | 
  for (k=0; k<sigmaGrid.size(); k++){ | 
| 62 | 
+ | 
    sigmaOut << sigmaGrid[k] << "\n0\n"; | 
| 63 | 
+ | 
    sOut << sGrid[k] << "\n0\n"; | 
| 64 | 
+ | 
    epsOut << epsGrid[k] << "\n0\n"; | 
| 65 | 
+ | 
  } | 
| 66 | 
+ | 
   */ | 
| 67 | 
  | 
} | 
| 68 | 
  | 
 | 
| 69 | 
  | 
void GridBuilder::initBody(){ | 
| 122 | 
  | 
} | 
| 123 | 
  | 
 | 
| 124 | 
  | 
void GridBuilder::calcEnergy(){ | 
| 125 | 
< | 
         | 
| 126 | 
< | 
} | 
| 125 | 
> | 
  double rXij, rYij, rZij; | 
| 126 | 
> | 
  double rijSquared; | 
| 127 | 
> | 
  double rValSquared, rValPowerSix; | 
| 128 | 
> | 
  double rparHe, epsHe; | 
| 129 | 
> | 
  double atomRpar, atomEps; | 
| 130 | 
> | 
  double rbAtomPos[3]; | 
| 131 | 
> | 
   | 
| 132 | 
> | 
  //first get the probe atom parameters | 
| 133 | 
> | 
  switch(forcefield){ | 
| 134 | 
> | 
    case 1:{ | 
| 135 | 
> | 
      rparHe = 1.4800; | 
| 136 | 
> | 
      epsHe = -0.021270; | 
| 137 | 
> | 
    }; break; | 
| 138 | 
> | 
    case 2:{ | 
| 139 | 
> | 
      rparHe = 1.14; | 
| 140 | 
> | 
      epsHe = 0.0203; | 
| 141 | 
> | 
    }; break; | 
| 142 | 
> | 
    case 3:{ | 
| 143 | 
> | 
      rparHe = 2.28; | 
| 144 | 
> | 
      epsHe = 0.020269601874; | 
| 145 | 
> | 
    }; break; | 
| 146 | 
> | 
    case 4:{ | 
| 147 | 
> | 
      rparHe = 2.5560; | 
| 148 | 
> | 
      epsHe = 0.0200; | 
| 149 | 
> | 
    }; break; | 
| 150 | 
> | 
    case 5:{ | 
| 151 | 
> | 
      rparHe = 1.14; | 
| 152 | 
> | 
      epsHe = 0.0203; | 
| 153 | 
> | 
    }; break; | 
| 154 | 
> | 
  } | 
| 155 | 
> | 
   | 
| 156 | 
> | 
  potEnergy = 0.0; | 
| 157 | 
> | 
   | 
| 158 | 
> | 
  for(i=0; i<rbMol->getNumAtoms(); i++){ | 
| 159 | 
> | 
    rbMol->getAtomPos(rbAtomPos, i); | 
| 160 | 
> | 
     | 
| 161 | 
> | 
    rXij = rbAtomPos[0]; | 
| 162 | 
> | 
    rYij = rbAtomPos[1]; | 
| 163 | 
> | 
    rZij = rbAtomPos[2] - probeCoor; | 
| 164 | 
> | 
     | 
| 165 | 
> | 
    rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; | 
| 166 | 
> | 
     | 
| 167 | 
> | 
    //in the interest of keeping the code more compact, we are being less efficient by placing  | 
| 168 | 
> | 
    //a switch statement in the calculation loop | 
| 169 | 
> | 
    switch(forcefield){ | 
| 170 | 
> | 
      case 1:{ | 
| 171 | 
> | 
        //we are using the CHARMm force field | 
| 172 | 
> | 
        atomRpar = rbMol->getAtomRpar(i); | 
| 173 | 
> | 
        atomEps = rbMol->getAtomEps(i); | 
| 174 | 
> | 
         | 
| 175 | 
> | 
        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); | 
| 176 | 
> | 
        rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 177 | 
> | 
        potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); | 
| 178 | 
> | 
      }; break; | 
| 179 | 
> | 
       | 
| 180 | 
> | 
      case 2:{ | 
| 181 | 
> | 
        //we are using the AMBER force field | 
| 182 | 
> | 
        atomRpar = rbMol->getAtomRpar(i); | 
| 183 | 
> | 
        atomEps = rbMol->getAtomEps(i); | 
| 184 | 
> | 
         | 
| 185 | 
> | 
        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); | 
| 186 | 
> | 
        rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 187 | 
> | 
        potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); | 
| 188 | 
> | 
      }; break; | 
| 189 | 
> | 
       | 
| 190 | 
> | 
      case 3:{ | 
| 191 | 
> | 
        //we are using Allen-Tildesley LJ parameters | 
| 192 | 
> | 
        atomRpar = rbMol->getAtomRpar(i); | 
| 193 | 
> | 
        atomEps = rbMol->getAtomEps(i); | 
| 194 | 
> | 
         | 
| 195 | 
> | 
        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared); | 
| 196 | 
> | 
        rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 197 | 
> | 
        potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); | 
| 198 | 
> | 
         | 
| 199 | 
> | 
      }; break; | 
| 200 | 
> | 
         | 
| 201 | 
> | 
       | 
| 202 | 
> | 
      case 4:{ | 
| 203 | 
> | 
        //we are using the OPLS force field | 
| 204 | 
> | 
        atomRpar = rbMol->getAtomRpar(i); | 
| 205 | 
> | 
        atomEps = rbMol->getAtomEps(i); | 
| 206 | 
> | 
         | 
| 207 | 
> | 
        rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared); | 
| 208 | 
> | 
        rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 209 | 
> | 
        potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); | 
| 210 | 
> | 
      }; break; | 
| 211 | 
> | 
       | 
| 212 | 
> | 
      case 5:{ | 
| 213 | 
> | 
        //we are using the GAFF force field | 
| 214 | 
> | 
        atomRpar = rbMol->getAtomRpar(i); | 
| 215 | 
> | 
        atomEps = rbMol->getAtomEps(i); | 
| 216 | 
> | 
         | 
| 217 | 
> | 
        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); | 
| 218 | 
> | 
        rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 219 | 
> | 
        potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); | 
| 220 | 
> | 
      }; break; | 
| 221 | 
> | 
    }     | 
| 222 | 
> | 
  } | 
| 223 | 
> | 
}  | 
| 224 | 
  | 
 | 
| 225 | 
  | 
void GridBuilder::stepTheta(double increment){ | 
| 226 | 
  | 
  //zero out the euler angles | 
| 227 | 
< | 
  for (i=0; i<3; i++) | 
| 227 | 
> | 
  for (l=0; l<3; l++) | 
| 228 | 
  | 
    angles[i] = 0.0; | 
| 229 | 
  | 
         | 
| 230 | 
  | 
  //the second euler angle is for rotation about the x-axis (we use the zxz convention) | 
| 241 | 
  | 
 | 
| 242 | 
  | 
void GridBuilder::stepPhi(double increment){ | 
| 243 | 
  | 
  //zero out the euler angles | 
| 244 | 
< | 
  for (i=0; i<3; i++) | 
| 244 | 
> | 
  for (l=0; l<3; l++) | 
| 245 | 
  | 
    angles[i] = 0.0; | 
| 246 | 
  | 
         | 
| 247 | 
  | 
  //the phi euler angle is for rotation about the z-axis (we use the zxz convention) | 
| 255 | 
  | 
  matMul3(rotZ, rbMatrix, rotatedMat); | 
| 256 | 
  | 
  rbMol->setA(rotatedMat);       | 
| 257 | 
  | 
} | 
| 258 | 
+ | 
 | 
| 259 | 
+ | 
void GridBuilder::printGridFiles(){ | 
| 260 | 
+ | 
  ofstream sigmaOut("sigma.grid"); | 
| 261 | 
+ | 
  ofstream sOut("s.grid"); | 
| 262 | 
+ | 
  ofstream epsOut("eps.grid"); | 
| 263 | 
+ | 
   | 
| 264 | 
+ | 
  for (k=0; k<sigList.size(); k++){ | 
| 265 | 
+ | 
    sigmaOut << sigList[k] << "\n0\n"; | 
| 266 | 
+ | 
    sOut << sList[k] << "\n0\n";     | 
| 267 | 
+ | 
    epsOut << epsList[k] << "\n0\n"; | 
| 268 | 
+ | 
  } | 
| 269 | 
+ | 
} |