| 1 | 
#include "GridBuilder.hpp" | 
| 2 | 
#include "MatVec3.h" | 
| 3 | 
#define PI 3.14159265359 | 
| 4 | 
 | 
| 5 | 
 | 
| 6 | 
GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { | 
| 7 | 
  rbMol = rb; | 
| 8 | 
  bandwidth = bandWidth; | 
| 9 | 
  thetaStep = PI / bandwidth; | 
| 10 | 
  thetaMin = thetaStep / 2.0; | 
| 11 | 
  phiStep = thetaStep * 2.0; | 
| 12 | 
         | 
| 13 | 
  //zero out the rot mats | 
| 14 | 
  for (i=0; i<3; i++) { | 
| 15 | 
    for (j=0; j<3; j++) { | 
| 16 | 
      rotX[i][j] = 0.0; | 
| 17 | 
      rotZ[i][j] = 0.0; | 
| 18 | 
      rbMatrix[i][j] = 0.0; | 
| 19 | 
    } | 
| 20 | 
  } | 
| 21 | 
} | 
| 22 | 
 | 
| 23 | 
GridBuilder::~GridBuilder() { | 
| 24 | 
} | 
| 25 | 
 | 
| 26 | 
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, | 
| 27 | 
                              vector<double> epsGrid){ | 
| 28 | 
  double startDist; | 
| 29 | 
  double minDist = 10.0; //minimum start distance | 
| 30 | 
         | 
| 31 | 
  forcefield = forceField; | 
| 32 | 
     | 
| 33 | 
  //first determine the start distance - we always start at least minDist away | 
| 34 | 
  startDist = rbMol->findMaxExtent() + minDist; | 
| 35 | 
  if (startDist < minDist) | 
| 36 | 
    startDist = minDist; | 
| 37 | 
         | 
| 38 | 
  initBody(); | 
| 39 | 
  for (i=0; i<bandwidth; i++){           | 
| 40 | 
    for (j=0; j<bandwidth; j++){ | 
| 41 | 
      releaseProbe(startDist); | 
| 42 | 
 | 
| 43 | 
      sigmaGrid.push_back(sigDist); | 
| 44 | 
      sGrid.push_back(sDist); | 
| 45 | 
      epsGrid.push_back(epsVal); | 
| 46 | 
                         | 
| 47 | 
      stepPhi(phiStep); | 
| 48 | 
    } | 
| 49 | 
    stepTheta(thetaStep); | 
| 50 | 
  }              | 
| 51 | 
} | 
| 52 | 
 | 
| 53 | 
void GridBuilder::initBody(){ | 
| 54 | 
  //set up the rigid body in the starting configuration | 
| 55 | 
  stepTheta(thetaMin); | 
| 56 | 
} | 
| 57 | 
 | 
| 58 | 
void GridBuilder::releaseProbe(double farPos){ | 
| 59 | 
  int tooClose; | 
| 60 | 
  double tempPotEnergy; | 
| 61 | 
  double interpRange; | 
| 62 | 
  double interpFrac; | 
| 63 | 
         | 
| 64 | 
  probeCoor = farPos; | 
| 65 | 
  potProgress.clear(); | 
| 66 | 
  distProgress.clear(); | 
| 67 | 
  tooClose = 0; | 
| 68 | 
  epsVal = 0; | 
| 69 | 
  rhoStep = 0.1; //the distance the probe atom moves between steps | 
| 70 | 
         | 
| 71 | 
         | 
| 72 | 
  while (!tooClose){ | 
| 73 | 
    calcEnergy(); | 
| 74 | 
    potProgress.push_back(potEnergy); | 
| 75 | 
    distProgress.push_back(probeCoor); | 
| 76 | 
                 | 
| 77 | 
    //if we've reached a new minimum, save the value and position | 
| 78 | 
    if (potEnergy < epsVal){ | 
| 79 | 
      epsVal = potEnergy; | 
| 80 | 
      sDist = probeCoor; | 
| 81 | 
    } | 
| 82 | 
                 | 
| 83 | 
    //test if the probe reached the origin - if so, stop stepping closer | 
| 84 | 
    if (probeCoor < 0){ | 
| 85 | 
      sigDist = 0.0; | 
| 86 | 
      tooClose = 1; | 
| 87 | 
    } | 
| 88 | 
                 | 
| 89 | 
    //test if the probe beyond the contact point - if not, take a step closer | 
| 90 | 
    if (potEnergy < 0){ | 
| 91 | 
      sigDist = probeCoor; | 
| 92 | 
      tempPotEnergy = potEnergy; | 
| 93 | 
      probeCoor -= rhoStep; | 
| 94 | 
    } | 
| 95 | 
    else { | 
| 96 | 
      //do a linear interpolation to obtain the sigDist  | 
| 97 | 
      interpRange = potEnergy - tempPotEnergy; | 
| 98 | 
      interpFrac = potEnergy / interpRange; | 
| 99 | 
      interpFrac = interpFrac * rhoStep; | 
| 100 | 
      sigDist = probeCoor + interpFrac; | 
| 101 | 
                         | 
| 102 | 
      //end the loop | 
| 103 | 
      tooClose = 1; | 
| 104 | 
    } | 
| 105 | 
  } | 
| 106 | 
} | 
| 107 | 
 | 
| 108 | 
void GridBuilder::calcEnergy(){ | 
| 109 | 
         | 
| 110 | 
} | 
| 111 | 
 | 
| 112 | 
void GridBuilder::stepTheta(double increment){ | 
| 113 | 
  //zero out the euler angles | 
| 114 | 
  for (i=0; i<3; i++) | 
| 115 | 
    angles[i] = 0.0; | 
| 116 | 
         | 
| 117 | 
  //the second euler angle is for rotation about the x-axis (we use the zxz convention) | 
| 118 | 
  angles[1] = increment; | 
| 119 | 
         | 
| 120 | 
  //obtain the rotation matrix through the rigid body class | 
| 121 | 
  rbMol->doEulerToRotMat(angles, rotX); | 
| 122 | 
         | 
| 123 | 
  //rotate the rigid body | 
| 124 | 
  rbMol->getA(rbMatrix); | 
| 125 | 
  matMul3(rotX, rbMatrix, rotatedMat); | 
| 126 | 
  rbMol->setA(rotatedMat);       | 
| 127 | 
} | 
| 128 | 
 | 
| 129 | 
void GridBuilder::stepPhi(double increment){ | 
| 130 | 
  //zero out the euler angles | 
| 131 | 
  for (i=0; i<3; i++) | 
| 132 | 
    angles[i] = 0.0; | 
| 133 | 
         | 
| 134 | 
  //the phi euler angle is for rotation about the z-axis (we use the zxz convention) | 
| 135 | 
  angles[0] = increment; | 
| 136 | 
         | 
| 137 | 
  //obtain the rotation matrix through the rigid body class | 
| 138 | 
  rbMol->doEulerToRotMat(angles, rotZ); | 
| 139 | 
         | 
| 140 | 
  //rotate the rigid body | 
| 141 | 
  rbMol->getA(rbMatrix); | 
| 142 | 
  matMul3(rotZ, rbMatrix, rotatedMat); | 
| 143 | 
  rbMol->setA(rotatedMat);       | 
| 144 | 
} |