1 |
|
#include "GridBuilder.hpp" |
2 |
– |
#include "MatVec3.h" |
2 |
|
#define PI 3.14159265359 |
3 |
|
|
4 |
|
|
5 |
< |
GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { |
6 |
< |
rbMol = rb; |
7 |
< |
bandwidth = bandWidth; |
8 |
< |
thetaStep = PI / bandwidth; |
9 |
< |
thetaMin = thetaStep / 2.0; |
10 |
< |
phiStep = thetaStep * 2.0; |
12 |
< |
|
13 |
< |
//zero out the rot mats |
14 |
< |
for (i=0; i<3; i++) { |
15 |
< |
for (j=0; j<3; j++) { |
16 |
< |
rotX[i][j] = 0.0; |
17 |
< |
rotZ[i][j] = 0.0; |
18 |
< |
rbMatrix[i][j] = 0.0; |
19 |
< |
} |
20 |
< |
} |
5 |
> |
GridBuilder::GridBuilder(RigidBody* rb, int gridWidth) { |
6 |
> |
rbMol = rb; |
7 |
> |
gridwidth = gridWidth; |
8 |
> |
thetaStep = PI / gridwidth; |
9 |
> |
thetaMin = thetaStep / 2.0; |
10 |
> |
phiStep = thetaStep * 2.0; |
11 |
|
} |
12 |
|
|
13 |
|
GridBuilder::~GridBuilder() { |
14 |
|
} |
15 |
|
|
16 |
< |
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, |
17 |
< |
vector<double> epsGrid){ |
18 |
< |
double startDist; |
19 |
< |
double minDist = 10.0; //minimum start distance |
16 |
> |
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, |
17 |
> |
vector<double> sGrid, vector<double> epsGrid){ |
18 |
> |
ofstream sigmaOut("sigma.grid"); |
19 |
> |
ofstream sOut("s.grid"); |
20 |
> |
ofstream epsOut("eps.grid"); |
21 |
> |
double startDist; |
22 |
> |
double phiVal; |
23 |
> |
double thetaVal; |
24 |
> |
double sigTemp, sTemp, epsTemp, sigProbe; |
25 |
> |
double minDist = 10.0; //minimum start distance |
26 |
|
|
27 |
< |
//first determine the start distance - we always start at least minDist away |
28 |
< |
startDist = rbMol->findMaxExtent() + minDist; |
29 |
< |
if (startDist < minDist) |
30 |
< |
startDist = minDist; |
31 |
< |
|
32 |
< |
initBody(); |
33 |
< |
for (i=0; i<bandwidth; i++){ |
34 |
< |
for (j=0; j<bandwidth; j++){ |
35 |
< |
releaseProbe(startDist); |
36 |
< |
stepPhi(phiStep); |
37 |
< |
} |
38 |
< |
stepTheta(thetaStep); |
39 |
< |
} |
40 |
< |
|
41 |
< |
} |
27 |
> |
sigList = sigmaGrid; |
28 |
> |
sList = sGrid; |
29 |
> |
epsList = epsGrid; |
30 |
> |
forcefield = forceField; |
31 |
> |
|
32 |
> |
//load the probe atom parameters |
33 |
> |
switch(forcefield){ |
34 |
> |
case 1:{ |
35 |
> |
rparHe = 1.4800; |
36 |
> |
epsHe = -0.021270; |
37 |
> |
}; break; |
38 |
> |
case 2:{ |
39 |
> |
rparHe = 1.14; |
40 |
> |
epsHe = 0.0203; |
41 |
> |
}; break; |
42 |
> |
case 3:{ |
43 |
> |
rparHe = 2.28; |
44 |
> |
epsHe = 0.020269601874; |
45 |
> |
}; break; |
46 |
> |
case 4:{ |
47 |
> |
rparHe = 2.5560; |
48 |
> |
epsHe = 0.0200; |
49 |
> |
}; break; |
50 |
> |
case 5:{ |
51 |
> |
rparHe = 1.14; |
52 |
> |
epsHe = 0.0203; |
53 |
> |
}; break; |
54 |
> |
} |
55 |
> |
|
56 |
> |
if (rparHe < 2.2) |
57 |
> |
sigProbe = 2*rparHe/1.12246204831; |
58 |
> |
else |
59 |
> |
sigProbe = rparHe; |
60 |
> |
|
61 |
> |
//determine the start distance - we always start at least minDist away |
62 |
> |
startDist = rbMol->findMaxExtent() + minDist; |
63 |
> |
if (startDist < minDist) |
64 |
> |
startDist = minDist; |
65 |
|
|
66 |
< |
void GridBuilder::initBody(){ |
67 |
< |
//set up the rigid body in the starting configuration |
68 |
< |
stepTheta(thetaMin); |
66 |
> |
//set the initial orientation of the body and loop over theta values |
67 |
> |
|
68 |
> |
for (k =0; k < gridwidth; k++) { |
69 |
> |
thetaVal = thetaMin + k*thetaStep; |
70 |
> |
for (j=0; j < gridwidth; j++) { |
71 |
> |
//s2kit10 is actually taking a grid from -pi/2 to 3pi/3, not 0 to 2pi... |
72 |
> |
phiVal = j*phiStep - 0.5*PI; |
73 |
> |
if (phiVal<0.0) |
74 |
> |
phiVal += 2*PI; |
75 |
> |
|
76 |
> |
rbMol->setEuler(0.0, thetaVal, phiVal); |
77 |
> |
|
78 |
> |
releaseProbe(startDist); |
79 |
> |
|
80 |
> |
//translate the values to sigma, s, and epsilon of the rigid body |
81 |
> |
sigTemp = 2*sigDist - sigProbe; |
82 |
> |
sTemp = (2*(sDist - sigDist))/(0.122462048309) - sigProbe; |
83 |
> |
epsTemp = pow(epsVal, 2)/fabs(epsHe); |
84 |
> |
|
85 |
> |
sigList.push_back(sigTemp); |
86 |
> |
sList.push_back(sTemp); |
87 |
> |
epsList.push_back(epsTemp); |
88 |
> |
} |
89 |
> |
} |
90 |
|
} |
91 |
|
|
92 |
|
void GridBuilder::releaseProbe(double farPos){ |
93 |
< |
int tooClose; |
94 |
< |
double tempPotEnergy; |
95 |
< |
double interpRange; |
96 |
< |
double interpFrac; |
93 |
> |
int tooClose; |
94 |
> |
double tempPotEnergy; |
95 |
> |
double interpRange; |
96 |
> |
double interpFrac; |
97 |
|
|
98 |
< |
probeCoor = farPos; |
99 |
< |
tooClose = 0; |
100 |
< |
epsVal = 0; |
101 |
< |
rhoStep = 0.1; //the distance the probe atom moves between steps |
102 |
< |
|
103 |
< |
while (!tooClose){ |
64 |
< |
calcEnergy(); |
65 |
< |
potProgress.push_back(potEnergy); |
66 |
< |
distProgress.push_back(probeCoor); |
98 |
> |
probeCoor = farPos; |
99 |
> |
potProgress.clear(); |
100 |
> |
distProgress.clear(); |
101 |
> |
tooClose = 0; |
102 |
> |
epsVal = 0; |
103 |
> |
rhoStep = 0.1; //the distance the probe atom moves between steps |
104 |
|
|
105 |
< |
//if we've reached a new minimum, save the value and position |
106 |
< |
if (potEnergy < epsVal){ |
107 |
< |
epsVal = potEnergy; |
108 |
< |
sDist = probeCoor; |
72 |
< |
} |
105 |
> |
while (!tooClose){ |
106 |
> |
calcEnergy(); |
107 |
> |
potProgress.push_back(potEnergy); |
108 |
> |
distProgress.push_back(probeCoor); |
109 |
|
|
110 |
< |
//test if the probe reached the origin - if so, stop stepping closer |
111 |
< |
if (probeCoor < 0){ |
112 |
< |
sigDist = 0.0; |
113 |
< |
tooClose = 1; |
114 |
< |
} |
110 |
> |
//if we've reached a new minimum, save the value and position |
111 |
> |
if (potEnergy < epsVal){ |
112 |
> |
epsVal = potEnergy; |
113 |
> |
sDist = probeCoor; |
114 |
> |
} |
115 |
|
|
116 |
< |
//test if the probe beyond the contact point - if not, take a step closer |
117 |
< |
if (potEnergy < 0){ |
118 |
< |
sigDist = probeCoor; |
119 |
< |
tempPotEnergy = potEnergy; |
120 |
< |
probeCoor -= rhoStep; |
121 |
< |
} |
122 |
< |
else { |
123 |
< |
//do a linear interpolation to obtain the sigDist |
124 |
< |
interpRange = potEnergy - tempPotEnergy; |
125 |
< |
interpFrac = potEnergy / interpRange; |
126 |
< |
interpFrac = interpFrac * rhoStep; |
127 |
< |
sigDist = probeCoor + interpFrac; |
116 |
> |
//test if the probe reached the origin - if so, stop stepping closer |
117 |
> |
if (probeCoor < 0){ |
118 |
> |
sigDist = 0.0; |
119 |
> |
tooClose = 1; |
120 |
> |
} |
121 |
> |
|
122 |
> |
//test if the probe beyond the contact point - if not, take a step closer |
123 |
> |
if (potEnergy < 0){ |
124 |
> |
sigDist = probeCoor; |
125 |
> |
tempPotEnergy = potEnergy; |
126 |
> |
probeCoor -= rhoStep; |
127 |
> |
} |
128 |
> |
else { |
129 |
> |
//do a linear interpolation to obtain the sigDist |
130 |
> |
interpRange = potEnergy - tempPotEnergy; |
131 |
> |
interpFrac = potEnergy / interpRange; |
132 |
> |
interpFrac = interpFrac * rhoStep; |
133 |
> |
sigDist = probeCoor + interpFrac; |
134 |
|
|
135 |
< |
//end the loop |
136 |
< |
tooClose = 1; |
137 |
< |
} |
138 |
< |
} |
135 |
> |
//end the loop |
136 |
> |
tooClose = 1; |
137 |
> |
} |
138 |
> |
} |
139 |
|
} |
140 |
|
|
141 |
|
void GridBuilder::calcEnergy(){ |
142 |
< |
|
143 |
< |
} |
142 |
> |
double rXij, rYij, rZij; |
143 |
> |
double rijSquared; |
144 |
> |
double rValSquared, rValPowerSix; |
145 |
> |
double atomRpar, atomEps; |
146 |
> |
double rbAtomPos[3]; |
147 |
> |
|
148 |
> |
potEnergy = 0.0; |
149 |
|
|
150 |
< |
void GridBuilder::stepTheta(double increment){ |
151 |
< |
//zero out the euler angles |
152 |
< |
for (i=0; i<3; i++) |
153 |
< |
angles[i] = 0.0; |
154 |
< |
|
155 |
< |
//the second euler angle is for rotation about the x-axis (we use the zxz convention) |
156 |
< |
angles[1] = increment; |
157 |
< |
|
158 |
< |
//obtain the rotation matrix through the rigid body class |
159 |
< |
rbMol->doEulerToRotMat(angles, rotX); |
160 |
< |
|
161 |
< |
//rotate the rigid body |
162 |
< |
rbMol->getA(rbMatrix); |
163 |
< |
matMul3(rotX, rbMatrix, rotatedMat); |
164 |
< |
rbMol->setA(rotatedMat); |
165 |
< |
|
166 |
< |
} |
150 |
> |
for(i=0; i<rbMol->getNumAtoms(); i++){ |
151 |
> |
rbMol->getAtomPos(rbAtomPos, i); |
152 |
> |
|
153 |
> |
rXij = rbAtomPos[0]; |
154 |
> |
rYij = rbAtomPos[1]; |
155 |
> |
rZij = rbAtomPos[2] - probeCoor; |
156 |
> |
|
157 |
> |
rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; |
158 |
> |
|
159 |
> |
//in the interest of keeping the code more compact, we are being less |
160 |
> |
//efficient by placing a switch statement in the calculation loop |
161 |
> |
switch(forcefield){ |
162 |
> |
case 1:{ |
163 |
> |
//we are using the CHARMm force field |
164 |
> |
atomRpar = rbMol->getAtomRpar(i); |
165 |
> |
atomEps = rbMol->getAtomEps(i); |
166 |
> |
|
167 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
168 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
169 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
170 |
> |
}; break; |
171 |
> |
|
172 |
> |
case 2:{ |
173 |
> |
//we are using the AMBER force field |
174 |
> |
atomRpar = rbMol->getAtomRpar(i); |
175 |
> |
atomEps = rbMol->getAtomEps(i); |
176 |
> |
|
177 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
178 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
179 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
180 |
> |
}; break; |
181 |
> |
|
182 |
> |
case 3:{ |
183 |
> |
//we are using Allen-Tildesley LJ parameters |
184 |
> |
atomRpar = rbMol->getAtomRpar(i); |
185 |
> |
atomEps = rbMol->getAtomEps(i); |
186 |
> |
|
187 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared); |
188 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
189 |
> |
potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
190 |
> |
|
191 |
> |
}; break; |
192 |
> |
|
193 |
> |
case 4:{ |
194 |
> |
//we are using the OPLS force field |
195 |
> |
atomRpar = rbMol->getAtomRpar(i); |
196 |
> |
atomEps = rbMol->getAtomEps(i); |
197 |
> |
|
198 |
> |
rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared); |
199 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
200 |
> |
potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
201 |
> |
}; break; |
202 |
> |
|
203 |
> |
case 5:{ |
204 |
> |
//we are using the GAFF force field |
205 |
> |
atomRpar = rbMol->getAtomRpar(i); |
206 |
> |
atomEps = rbMol->getAtomEps(i); |
207 |
> |
|
208 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
209 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
210 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
211 |
> |
}; break; |
212 |
> |
} |
213 |
> |
} |
214 |
> |
} |
215 |
|
|
216 |
< |
void GridBuilder::stepPhi(double increment){ |
217 |
< |
//zero out the euler angles |
218 |
< |
for (i=0; i<3; i++) |
219 |
< |
angles[i] = 0.0; |
220 |
< |
|
221 |
< |
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
222 |
< |
angles[0] = increment; |
223 |
< |
|
224 |
< |
//obtain the rotation matrix through the rigid body class |
225 |
< |
rbMol->doEulerToRotMat(angles, rotZ); |
131 |
< |
|
132 |
< |
//rotate the rigid body |
133 |
< |
rbMol->getA(rbMatrix); |
134 |
< |
matMul3(rotZ, rbMatrix, rotatedMat); |
135 |
< |
rbMol->setA(rotatedMat); |
136 |
< |
|
216 |
> |
void GridBuilder::printGridFiles(){ |
217 |
> |
ofstream sigmaOut("sigma.grid"); |
218 |
> |
ofstream sOut("s.grid"); |
219 |
> |
ofstream epsOut("eps.grid"); |
220 |
> |
|
221 |
> |
for (k=0; k<sigList.size(); k++){ |
222 |
> |
sigmaOut << sigList[k] << "\n0\n"; |
223 |
> |
sOut << sList[k] << "\n0\n"; |
224 |
> |
epsOut << epsList[k] << "\n0\n"; |
225 |
> |
} |
226 |
|
} |
227 |
+ |
|