1 |
|
#include "GridBuilder.hpp" |
2 |
– |
#include "MatVec3.h" |
2 |
|
#define PI 3.14159265359 |
3 |
|
|
4 |
|
|
5 |
< |
GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { |
5 |
> |
GridBuilder::GridBuilder(RigidBody* rb, int gridWidth) { |
6 |
|
rbMol = rb; |
7 |
< |
bandwidth = bandWidth; |
8 |
< |
thetaStep = PI / bandwidth; |
7 |
> |
gridwidth = gridWidth; |
8 |
> |
thetaStep = PI / gridwidth; |
9 |
|
thetaMin = thetaStep / 2.0; |
10 |
|
phiStep = thetaStep * 2.0; |
11 |
|
} |
21 |
|
double startDist; |
22 |
|
double phiVal; |
23 |
|
double thetaVal; |
24 |
+ |
double sigTemp, sTemp, epsTemp, sigProbe; |
25 |
|
double minDist = 10.0; //minimum start distance |
26 |
|
|
27 |
– |
sList = sGrid; |
27 |
|
sigList = sigmaGrid; |
28 |
+ |
sList = sGrid; |
29 |
|
epsList = epsGrid; |
30 |
|
forcefield = forceField; |
31 |
+ |
|
32 |
+ |
//load the probe atom parameters |
33 |
+ |
switch(forcefield){ |
34 |
+ |
case 1:{ |
35 |
+ |
rparHe = 1.4800; |
36 |
+ |
epsHe = -0.021270; |
37 |
+ |
}; break; |
38 |
+ |
case 2:{ |
39 |
+ |
rparHe = 1.14; |
40 |
+ |
epsHe = 0.0203; |
41 |
+ |
}; break; |
42 |
+ |
case 3:{ |
43 |
+ |
rparHe = 2.28; |
44 |
+ |
epsHe = 0.020269601874; |
45 |
+ |
}; break; |
46 |
+ |
case 4:{ |
47 |
+ |
rparHe = 2.5560; |
48 |
+ |
epsHe = 0.0200; |
49 |
+ |
}; break; |
50 |
+ |
case 5:{ |
51 |
+ |
rparHe = 1.14; |
52 |
+ |
epsHe = 0.0203; |
53 |
+ |
}; break; |
54 |
+ |
} |
55 |
|
|
56 |
< |
//first determine the start distance - we always start at least minDist away |
56 |
> |
if (rparHe < 2.2) |
57 |
> |
sigProbe = 2*rparHe/1.12246204831; |
58 |
> |
else |
59 |
> |
sigProbe = rparHe; |
60 |
> |
|
61 |
> |
//determine the start distance - we always start at least minDist away |
62 |
|
startDist = rbMol->findMaxExtent() + minDist; |
63 |
|
if (startDist < minDist) |
64 |
|
startDist = minDist; |
65 |
|
|
37 |
– |
printf("startDist = %lf\n", startDist); |
38 |
– |
|
66 |
|
//set the initial orientation of the body and loop over theta values |
67 |
|
|
68 |
< |
for (k =0; k < bandwidth; k++) { |
68 |
> |
for (k =0; k < gridwidth; k++) { |
69 |
|
thetaVal = thetaMin + k*thetaStep; |
70 |
< |
for (j=0; j < bandwidth; j++) { |
71 |
< |
phiVal = j*phiStep; |
70 |
> |
for (j=0; j < gridwidth; j++) { |
71 |
> |
phiVal = j*phiStep + 0.5*PI; |
72 |
> |
if (phiVal>=2*PI) |
73 |
> |
phiVal -= 2*PI; |
74 |
|
|
46 |
– |
printf("setting Euler, phi = %lf\ttheta = %lf\n", phiVal, thetaVal); |
47 |
– |
|
75 |
|
rbMol->setEuler(0.0, thetaVal, phiVal); |
76 |
|
|
77 |
|
releaseProbe(startDist); |
78 |
|
|
79 |
< |
printf("found sigDist = %lf\t sDist = %lf \t epsVal = %lf\n", |
80 |
< |
sigDist, sDist, epsVal); |
81 |
< |
|
82 |
< |
sigList.push_back(sigDist); |
83 |
< |
sList.push_back(sDist); |
84 |
< |
epsList.push_back(epsVal); |
85 |
< |
|
79 |
> |
//translate the values to sigma, s, and epsilon of the rigid body |
80 |
> |
sigTemp = 2*sigDist - sigProbe; |
81 |
> |
sTemp = (2*(sDist - sigDist))/(0.122462048309) - sigProbe; |
82 |
> |
epsTemp = pow(epsVal, 2)/fabs(epsHe); |
83 |
> |
|
84 |
> |
sigList.push_back(sigTemp); |
85 |
> |
sList.push_back(sTemp); |
86 |
> |
epsList.push_back(epsTemp); |
87 |
|
} |
88 |
|
} |
89 |
|
} |
141 |
|
double rXij, rYij, rZij; |
142 |
|
double rijSquared; |
143 |
|
double rValSquared, rValPowerSix; |
116 |
– |
double rparHe, epsHe; |
144 |
|
double atomRpar, atomEps; |
145 |
|
double rbAtomPos[3]; |
146 |
< |
|
120 |
< |
//first get the probe atom parameters |
121 |
< |
switch(forcefield){ |
122 |
< |
case 1:{ |
123 |
< |
rparHe = 1.4800; |
124 |
< |
epsHe = -0.021270; |
125 |
< |
}; break; |
126 |
< |
case 2:{ |
127 |
< |
rparHe = 1.14; |
128 |
< |
epsHe = 0.0203; |
129 |
< |
}; break; |
130 |
< |
case 3:{ |
131 |
< |
rparHe = 2.28; |
132 |
< |
epsHe = 0.020269601874; |
133 |
< |
}; break; |
134 |
< |
case 4:{ |
135 |
< |
rparHe = 2.5560; |
136 |
< |
epsHe = 0.0200; |
137 |
< |
}; break; |
138 |
< |
case 5:{ |
139 |
< |
rparHe = 1.14; |
140 |
< |
epsHe = 0.0203; |
141 |
< |
}; break; |
142 |
< |
} |
143 |
< |
|
146 |
> |
|
147 |
|
potEnergy = 0.0; |
148 |
|
|
146 |
– |
rbMol->getAtomPos(rbAtomPos, 0); |
147 |
– |
|
148 |
– |
printf("atom0 pos = %lf\t%lf\t%lf\n", rbAtomPos[0], rbAtomPos[1], rbAtomPos[2]); |
149 |
– |
|
150 |
– |
|
151 |
– |
|
149 |
|
for(i=0; i<rbMol->getNumAtoms(); i++){ |
150 |
|
rbMol->getAtomPos(rbAtomPos, i); |
151 |
|
|
155 |
|
|
156 |
|
rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; |
157 |
|
|
158 |
< |
//in the interest of keeping the code more compact, we are being less efficient by placing |
159 |
< |
//a switch statement in the calculation loop |
158 |
> |
//in the interest of keeping the code more compact, we are being less |
159 |
> |
//efficient by placing a switch statement in the calculation loop |
160 |
|
switch(forcefield){ |
161 |
|
case 1:{ |
162 |
|
//we are using the CHARMm force field |
223 |
|
epsOut << epsList[k] << "\n0\n"; |
224 |
|
} |
225 |
|
} |
226 |
+ |
|