1 |
#include "GridBuilder.hpp" |
2 |
#include "MatVec3.h" |
3 |
#define PI 3.14159265359 |
4 |
|
5 |
|
6 |
GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { |
7 |
rbMol = rb; |
8 |
bandwidth = bandWidth; |
9 |
thetaStep = PI / bandwidth; |
10 |
thetaMin = thetaStep / 2.0; |
11 |
phiStep = thetaStep * 2.0; |
12 |
|
13 |
//zero out the rot mats |
14 |
for (i=0; i<3; i++) { |
15 |
for (j=0; j<3; j++) { |
16 |
rotX[i][j] = 0.0; |
17 |
rotZ[i][j] = 0.0; |
18 |
rbMatrix[i][j] = 0.0; |
19 |
} |
20 |
} |
21 |
} |
22 |
|
23 |
GridBuilder::~GridBuilder() { |
24 |
} |
25 |
|
26 |
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, |
27 |
vector<double> epsGrid){ |
28 |
double startDist; |
29 |
double minDist = 10.0; //minimum start distance |
30 |
|
31 |
//first determine the start distance - we always start at least minDist away |
32 |
startDist = rbMol->findMaxExtent() + minDist; |
33 |
if (startDist < minDist) |
34 |
startDist = minDist; |
35 |
|
36 |
initBody(); |
37 |
for (i=0; i<bandwidth; i++){ |
38 |
for (j=0; j<bandwidth; j++){ |
39 |
releaseProbe(startDist); |
40 |
stepPhi(phiStep); |
41 |
} |
42 |
stepTheta(thetaStep); |
43 |
} |
44 |
|
45 |
} |
46 |
|
47 |
void GridBuilder::initBody(){ |
48 |
//set up the rigid body in the starting configuration |
49 |
stepTheta(thetaMin); |
50 |
} |
51 |
|
52 |
void GridBuilder::releaseProbe(double farPos){ |
53 |
int tooClose; |
54 |
double tempPotEnergy; |
55 |
double interpRange; |
56 |
double interpFrac; |
57 |
|
58 |
probeCoor = farPos; |
59 |
tooClose = 0; |
60 |
epsVal = 0; |
61 |
rhoStep = 0.1; //the distance the probe atom moves between steps |
62 |
|
63 |
while (!tooClose){ |
64 |
calcEnergy(); |
65 |
potProgress.push_back(potEnergy); |
66 |
distProgress.push_back(probeCoor); |
67 |
|
68 |
//if we've reached a new minimum, save the value and position |
69 |
if (potEnergy < epsVal){ |
70 |
epsVal = potEnergy; |
71 |
sDist = probeCoor; |
72 |
} |
73 |
|
74 |
//test if the probe reached the origin - if so, stop stepping closer |
75 |
if (probeCoor < 0){ |
76 |
sigDist = 0.0; |
77 |
tooClose = 1; |
78 |
} |
79 |
|
80 |
//test if the probe beyond the contact point - if not, take a step closer |
81 |
if (potEnergy < 0){ |
82 |
sigDist = probeCoor; |
83 |
tempPotEnergy = potEnergy; |
84 |
probeCoor -= rhoStep; |
85 |
} |
86 |
else { |
87 |
//do a linear interpolation to obtain the sigDist |
88 |
interpRange = potEnergy - tempPotEnergy; |
89 |
interpFrac = potEnergy / interpRange; |
90 |
interpFrac = interpFrac * rhoStep; |
91 |
sigDist = probeCoor + interpFrac; |
92 |
|
93 |
//end the loop |
94 |
tooClose = 1; |
95 |
} |
96 |
} |
97 |
} |
98 |
|
99 |
void GridBuilder::calcEnergy(){ |
100 |
|
101 |
} |
102 |
|
103 |
void GridBuilder::stepTheta(double increment){ |
104 |
//zero out the euler angles |
105 |
for (i=0; i<3; i++) |
106 |
angles[i] = 0.0; |
107 |
|
108 |
//the second euler angle is for rotation about the x-axis (we use the zxz convention) |
109 |
angles[1] = increment; |
110 |
|
111 |
//obtain the rotation matrix through the rigid body class |
112 |
rbMol->doEulerToRotMat(angles, rotX); |
113 |
|
114 |
//rotate the rigid body |
115 |
rbMol->getA(rbMatrix); |
116 |
matMul3(rotX, rbMatrix, rotatedMat); |
117 |
rbMol->setA(rotatedMat); |
118 |
|
119 |
} |
120 |
|
121 |
void GridBuilder::stepPhi(double increment){ |
122 |
//zero out the euler angles |
123 |
for (i=0; i<3; i++) |
124 |
angles[i] = 0.0; |
125 |
|
126 |
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
127 |
angles[0] = increment; |
128 |
|
129 |
//obtain the rotation matrix through the rigid body class |
130 |
rbMol->doEulerToRotMat(angles, rotZ); |
131 |
|
132 |
//rotate the rigid body |
133 |
rbMol->getA(rbMatrix); |
134 |
matMul3(rotZ, rbMatrix, rotatedMat); |
135 |
rbMol->setA(rotatedMat); |
136 |
|
137 |
} |