25 |
|
|
26 |
|
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, |
27 |
|
vector<double> epsGrid){ |
28 |
+ |
ofstream sigmaOut("sigma.grid"); |
29 |
+ |
ofstream sOut("s.grid"); |
30 |
+ |
ofstream epsOut("eps.grid"); |
31 |
|
double startDist; |
32 |
+ |
double phiVal; |
33 |
+ |
double thetaVal; |
34 |
|
double minDist = 10.0; //minimum start distance |
35 |
|
|
36 |
+ |
sList = sGrid; |
37 |
+ |
sigList = sigmaGrid; |
38 |
+ |
epsList = epsGrid; |
39 |
|
forcefield = forceField; |
40 |
|
|
41 |
|
//first determine the start distance - we always start at least minDist away |
42 |
|
startDist = rbMol->findMaxExtent() + minDist; |
43 |
|
if (startDist < minDist) |
44 |
|
startDist = minDist; |
45 |
< |
|
46 |
< |
initBody(); |
47 |
< |
for (i=0; i<bandwidth; i++){ |
45 |
> |
|
46 |
> |
//set the initial orientation of the body and loop over theta values |
47 |
> |
phiVal = 0.0; |
48 |
> |
thetaVal = thetaMin; |
49 |
> |
rotBody(phiVal, thetaVal); |
50 |
> |
for (k=0; k<bandwidth; k++){ |
51 |
> |
//loop over phi values starting with phi = 0.0 |
52 |
|
for (j=0; j<bandwidth; j++){ |
53 |
|
releaseProbe(startDist); |
54 |
|
|
55 |
< |
sigmaGrid.push_back(sigDist); |
56 |
< |
sGrid.push_back(sDist); |
57 |
< |
epsGrid.push_back(epsVal); |
58 |
< |
|
59 |
< |
stepPhi(phiStep); |
55 |
> |
sigList.push_back(sigDist); |
56 |
> |
sList.push_back(sDist); |
57 |
> |
epsList.push_back(epsVal); |
58 |
> |
|
59 |
> |
phiVal += phiStep; |
60 |
> |
rotBody(phiVal, thetaVal); |
61 |
|
} |
62 |
< |
stepTheta(thetaStep); |
62 |
> |
phiVal = 0.0; |
63 |
> |
thetaVal += thetaStep; |
64 |
> |
rotBody(phiVal, thetaVal); |
65 |
> |
printf("step theta %i\n",k); |
66 |
|
} |
67 |
|
} |
68 |
|
|
53 |
– |
void GridBuilder::initBody(){ |
54 |
– |
//set up the rigid body in the starting configuration |
55 |
– |
stepTheta(thetaMin); |
56 |
– |
} |
57 |
– |
|
69 |
|
void GridBuilder::releaseProbe(double farPos){ |
70 |
|
int tooClose; |
71 |
|
double tempPotEnergy; |
117 |
|
} |
118 |
|
|
119 |
|
void GridBuilder::calcEnergy(){ |
120 |
< |
|
121 |
< |
} |
120 |
> |
double rXij, rYij, rZij; |
121 |
> |
double rijSquared; |
122 |
> |
double rValSquared, rValPowerSix; |
123 |
> |
double rparHe, epsHe; |
124 |
> |
double atomRpar, atomEps; |
125 |
> |
double rbAtomPos[3]; |
126 |
> |
|
127 |
> |
//first get the probe atom parameters |
128 |
> |
switch(forcefield){ |
129 |
> |
case 1:{ |
130 |
> |
rparHe = 1.4800; |
131 |
> |
epsHe = -0.021270; |
132 |
> |
}; break; |
133 |
> |
case 2:{ |
134 |
> |
rparHe = 1.14; |
135 |
> |
epsHe = 0.0203; |
136 |
> |
}; break; |
137 |
> |
case 3:{ |
138 |
> |
rparHe = 2.28; |
139 |
> |
epsHe = 0.020269601874; |
140 |
> |
}; break; |
141 |
> |
case 4:{ |
142 |
> |
rparHe = 2.5560; |
143 |
> |
epsHe = 0.0200; |
144 |
> |
}; break; |
145 |
> |
case 5:{ |
146 |
> |
rparHe = 1.14; |
147 |
> |
epsHe = 0.0203; |
148 |
> |
}; break; |
149 |
> |
} |
150 |
> |
|
151 |
> |
potEnergy = 0.0; |
152 |
> |
|
153 |
> |
for(i=0; i<rbMol->getNumAtoms(); i++){ |
154 |
> |
rbMol->getAtomPos(rbAtomPos, i); |
155 |
> |
|
156 |
> |
rXij = rbAtomPos[0]; |
157 |
> |
rYij = rbAtomPos[1]; |
158 |
> |
rZij = rbAtomPos[2] - probeCoor; |
159 |
> |
|
160 |
> |
rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; |
161 |
> |
|
162 |
> |
//in the interest of keeping the code more compact, we are being less efficient by placing |
163 |
> |
//a switch statement in the calculation loop |
164 |
> |
switch(forcefield){ |
165 |
> |
case 1:{ |
166 |
> |
//we are using the CHARMm force field |
167 |
> |
atomRpar = rbMol->getAtomRpar(i); |
168 |
> |
atomEps = rbMol->getAtomEps(i); |
169 |
> |
|
170 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
171 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
172 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
173 |
> |
}; break; |
174 |
> |
|
175 |
> |
case 2:{ |
176 |
> |
//we are using the AMBER force field |
177 |
> |
atomRpar = rbMol->getAtomRpar(i); |
178 |
> |
atomEps = rbMol->getAtomEps(i); |
179 |
> |
|
180 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
181 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
182 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
183 |
> |
}; break; |
184 |
> |
|
185 |
> |
case 3:{ |
186 |
> |
//we are using Allen-Tildesley LJ parameters |
187 |
> |
atomRpar = rbMol->getAtomRpar(i); |
188 |
> |
atomEps = rbMol->getAtomEps(i); |
189 |
> |
|
190 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared); |
191 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
192 |
> |
potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
193 |
> |
|
194 |
> |
}; break; |
195 |
> |
|
196 |
> |
case 4:{ |
197 |
> |
//we are using the OPLS force field |
198 |
> |
atomRpar = rbMol->getAtomRpar(i); |
199 |
> |
atomEps = rbMol->getAtomEps(i); |
200 |
> |
|
201 |
> |
rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared); |
202 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
203 |
> |
potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
204 |
> |
}; break; |
205 |
> |
|
206 |
> |
case 5:{ |
207 |
> |
//we are using the GAFF force field |
208 |
> |
atomRpar = rbMol->getAtomRpar(i); |
209 |
> |
atomEps = rbMol->getAtomEps(i); |
210 |
> |
|
211 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
212 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
213 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
214 |
> |
}; break; |
215 |
> |
} |
216 |
> |
} |
217 |
> |
} |
218 |
|
|
219 |
< |
void GridBuilder::stepTheta(double increment){ |
219 |
> |
void GridBuilder::rotBody(double pValue, double tValue){ |
220 |
|
//zero out the euler angles |
221 |
< |
for (i=0; i<3; i++) |
221 |
> |
for (l=0; l<3; l++) |
222 |
|
angles[i] = 0.0; |
223 |
|
|
224 |
+ |
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
225 |
+ |
angles[0] = pValue; |
226 |
|
//the second euler angle is for rotation about the x-axis (we use the zxz convention) |
227 |
< |
angles[1] = increment; |
227 |
> |
angles[1] = tValue; |
228 |
|
|
229 |
|
//obtain the rotation matrix through the rigid body class |
230 |
|
rbMol->doEulerToRotMat(angles, rotX); |
231 |
< |
|
231 |
> |
|
232 |
> |
//start from the reference position |
233 |
> |
identityMat3(rbMatrix); |
234 |
> |
rbMol->setA(rbMatrix); |
235 |
> |
|
236 |
|
//rotate the rigid body |
124 |
– |
rbMol->getA(rbMatrix); |
237 |
|
matMul3(rotX, rbMatrix, rotatedMat); |
238 |
|
rbMol->setA(rotatedMat); |
239 |
|
} |
240 |
|
|
241 |
< |
void GridBuilder::stepPhi(double increment){ |
242 |
< |
//zero out the euler angles |
243 |
< |
for (i=0; i<3; i++) |
244 |
< |
angles[i] = 0.0; |
245 |
< |
|
246 |
< |
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
247 |
< |
angles[0] = increment; |
248 |
< |
|
249 |
< |
//obtain the rotation matrix through the rigid body class |
250 |
< |
rbMol->doEulerToRotMat(angles, rotZ); |
251 |
< |
|
140 |
< |
//rotate the rigid body |
141 |
< |
rbMol->getA(rbMatrix); |
142 |
< |
matMul3(rotZ, rbMatrix, rotatedMat); |
143 |
< |
rbMol->setA(rotatedMat); |
144 |
< |
} |
241 |
> |
void GridBuilder::printGridFiles(){ |
242 |
> |
ofstream sigmaOut("sigma.grid"); |
243 |
> |
ofstream sOut("s.grid"); |
244 |
> |
ofstream epsOut("eps.grid"); |
245 |
> |
|
246 |
> |
for (k=0; k<sigList.size(); k++){ |
247 |
> |
sigmaOut << sigList[k] << "\n0\n"; |
248 |
> |
sOut << sList[k] << "\n0\n"; |
249 |
> |
epsOut << epsList[k] << "\n0\n"; |
250 |
> |
} |
251 |
> |
} |