4 |
|
|
5 |
|
|
6 |
|
GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { |
7 |
< |
rbMol = rb; |
8 |
< |
bandwidth = bandWidth; |
9 |
< |
thetaStep = PI / bandwidth; |
10 |
< |
thetaMin = thetaStep / 2.0; |
11 |
< |
phiStep = thetaStep * 2.0; |
7 |
> |
rbMol = rb; |
8 |
> |
bandwidth = bandWidth; |
9 |
> |
thetaStep = PI / bandwidth; |
10 |
> |
thetaMin = thetaStep / 2.0; |
11 |
> |
phiStep = thetaStep * 2.0; |
12 |
|
|
13 |
< |
//zero out the rot mats |
14 |
< |
for (i=0; i<3; i++) { |
15 |
< |
for (j=0; j<3; j++) { |
16 |
< |
rotX[i][j] = 0.0; |
17 |
< |
rotZ[i][j] = 0.0; |
18 |
< |
rbMatrix[i][j] = 0.0; |
19 |
< |
} |
20 |
< |
} |
13 |
> |
//zero out the rot mats |
14 |
> |
for (i=0; i<3; i++) { |
15 |
> |
for (j=0; j<3; j++) { |
16 |
> |
rotX[i][j] = 0.0; |
17 |
> |
rotZ[i][j] = 0.0; |
18 |
> |
rbMatrix[i][j] = 0.0; |
19 |
> |
} |
20 |
> |
} |
21 |
|
} |
22 |
|
|
23 |
|
GridBuilder::~GridBuilder() { |
24 |
|
} |
25 |
|
|
26 |
|
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, |
27 |
< |
vector<double> epsGrid){ |
28 |
< |
double startDist; |
29 |
< |
double minDist = 10.0; //minimum start distance |
27 |
> |
vector<double> epsGrid){ |
28 |
> |
ofstream sigmaOut("sigma.grid"); |
29 |
> |
ofstream sOut("s.grid"); |
30 |
> |
ofstream epsOut("eps.grid"); |
31 |
> |
double startDist; |
32 |
> |
double minDist = 10.0; //minimum start distance |
33 |
|
|
34 |
< |
//first determine the start distance - we always start at least minDist away |
35 |
< |
startDist = rbMol->findMaxExtent() + minDist; |
36 |
< |
if (startDist < minDist) |
37 |
< |
startDist = minDist; |
38 |
< |
|
39 |
< |
initBody(); |
40 |
< |
for (i=0; i<bandwidth; i++){ |
41 |
< |
for (j=0; j<bandwidth; j++){ |
42 |
< |
releaseProbe(startDist); |
34 |
> |
sList = sGrid; |
35 |
> |
sigList = sigmaGrid; |
36 |
> |
epsList = epsGrid; |
37 |
> |
forcefield = forceField; |
38 |
> |
|
39 |
> |
//first determine the start distance - we always start at least minDist away |
40 |
> |
startDist = rbMol->findMaxExtent() + minDist; |
41 |
> |
if (startDist < minDist) |
42 |
> |
startDist = minDist; |
43 |
> |
|
44 |
> |
initBody(); |
45 |
> |
for (k=0; k<bandwidth; k++){ |
46 |
> |
printf("step theta...\n"); |
47 |
> |
for (j=0; j<bandwidth; j++){ |
48 |
> |
releaseProbe(startDist); |
49 |
> |
|
50 |
> |
sigList.push_back(sigDist); |
51 |
> |
sList.push_back(sDist); |
52 |
> |
epsList.push_back(epsVal); |
53 |
|
|
54 |
< |
sigmaGrid.push_back(sigDist); |
55 |
< |
sGrid.push_back(sDist); |
56 |
< |
epsGrid.push_back(epsVal); |
57 |
< |
|
58 |
< |
stepPhi(phiStep); |
59 |
< |
} |
60 |
< |
stepTheta(thetaStep); |
61 |
< |
} |
62 |
< |
|
54 |
> |
stepPhi(phiStep); |
55 |
> |
} |
56 |
> |
stepTheta(thetaStep); |
57 |
> |
} |
58 |
> |
/* |
59 |
> |
//write out the grid files |
60 |
> |
printf("the grid size is %d\n",sigmaGrid.size()); |
61 |
> |
for (k=0; k<sigmaGrid.size(); k++){ |
62 |
> |
sigmaOut << sigmaGrid[k] << "\n0\n"; |
63 |
> |
sOut << sGrid[k] << "\n0\n"; |
64 |
> |
epsOut << epsGrid[k] << "\n0\n"; |
65 |
> |
} |
66 |
> |
*/ |
67 |
|
} |
68 |
|
|
69 |
|
void GridBuilder::initBody(){ |
70 |
< |
//set up the rigid body in the starting configuration |
71 |
< |
stepTheta(thetaMin); |
70 |
> |
//set up the rigid body in the starting configuration |
71 |
> |
stepTheta(thetaMin); |
72 |
|
} |
73 |
|
|
74 |
|
void GridBuilder::releaseProbe(double farPos){ |
75 |
< |
int tooClose; |
76 |
< |
double tempPotEnergy; |
77 |
< |
double interpRange; |
78 |
< |
double interpFrac; |
75 |
> |
int tooClose; |
76 |
> |
double tempPotEnergy; |
77 |
> |
double interpRange; |
78 |
> |
double interpFrac; |
79 |
|
|
80 |
< |
probeCoor = farPos; |
81 |
< |
tooClose = 0; |
82 |
< |
epsVal = 0; |
83 |
< |
rhoStep = 0.1; //the distance the probe atom moves between steps |
80 |
> |
probeCoor = farPos; |
81 |
> |
potProgress.clear(); |
82 |
> |
distProgress.clear(); |
83 |
> |
tooClose = 0; |
84 |
> |
epsVal = 0; |
85 |
> |
rhoStep = 0.1; //the distance the probe atom moves between steps |
86 |
|
|
87 |
< |
while (!tooClose){ |
88 |
< |
calcEnergy(); |
89 |
< |
potProgress.push_back(potEnergy); |
90 |
< |
distProgress.push_back(probeCoor); |
87 |
> |
|
88 |
> |
while (!tooClose){ |
89 |
> |
calcEnergy(); |
90 |
> |
potProgress.push_back(potEnergy); |
91 |
> |
distProgress.push_back(probeCoor); |
92 |
|
|
93 |
< |
//if we've reached a new minimum, save the value and position |
94 |
< |
if (potEnergy < epsVal){ |
95 |
< |
epsVal = potEnergy; |
96 |
< |
sDist = probeCoor; |
97 |
< |
} |
93 |
> |
//if we've reached a new minimum, save the value and position |
94 |
> |
if (potEnergy < epsVal){ |
95 |
> |
epsVal = potEnergy; |
96 |
> |
sDist = probeCoor; |
97 |
> |
} |
98 |
|
|
99 |
< |
//test if the probe reached the origin - if so, stop stepping closer |
100 |
< |
if (probeCoor < 0){ |
101 |
< |
sigDist = 0.0; |
102 |
< |
tooClose = 1; |
103 |
< |
} |
99 |
> |
//test if the probe reached the origin - if so, stop stepping closer |
100 |
> |
if (probeCoor < 0){ |
101 |
> |
sigDist = 0.0; |
102 |
> |
tooClose = 1; |
103 |
> |
} |
104 |
|
|
105 |
< |
//test if the probe beyond the contact point - if not, take a step closer |
106 |
< |
if (potEnergy < 0){ |
107 |
< |
sigDist = probeCoor; |
108 |
< |
tempPotEnergy = potEnergy; |
109 |
< |
probeCoor -= rhoStep; |
110 |
< |
} |
111 |
< |
else { |
112 |
< |
//do a linear interpolation to obtain the sigDist |
113 |
< |
interpRange = potEnergy - tempPotEnergy; |
114 |
< |
interpFrac = potEnergy / interpRange; |
115 |
< |
interpFrac = interpFrac * rhoStep; |
116 |
< |
sigDist = probeCoor + interpFrac; |
105 |
> |
//test if the probe beyond the contact point - if not, take a step closer |
106 |
> |
if (potEnergy < 0){ |
107 |
> |
sigDist = probeCoor; |
108 |
> |
tempPotEnergy = potEnergy; |
109 |
> |
probeCoor -= rhoStep; |
110 |
> |
} |
111 |
> |
else { |
112 |
> |
//do a linear interpolation to obtain the sigDist |
113 |
> |
interpRange = potEnergy - tempPotEnergy; |
114 |
> |
interpFrac = potEnergy / interpRange; |
115 |
> |
interpFrac = interpFrac * rhoStep; |
116 |
> |
sigDist = probeCoor + interpFrac; |
117 |
|
|
118 |
< |
//end the loop |
119 |
< |
tooClose = 1; |
120 |
< |
} |
121 |
< |
} |
118 |
> |
//end the loop |
119 |
> |
tooClose = 1; |
120 |
> |
} |
121 |
> |
} |
122 |
|
} |
123 |
|
|
124 |
|
void GridBuilder::calcEnergy(){ |
125 |
< |
|
126 |
< |
} |
125 |
> |
double rXij, rYij, rZij; |
126 |
> |
double rijSquared; |
127 |
> |
double rValSquared, rValPowerSix; |
128 |
> |
double rparHe, epsHe; |
129 |
> |
double atomRpar, atomEps; |
130 |
> |
double rbAtomPos[3]; |
131 |
> |
|
132 |
> |
//first get the probe atom parameters |
133 |
> |
switch(forcefield){ |
134 |
> |
case 1:{ |
135 |
> |
rparHe = 1.4800; |
136 |
> |
epsHe = -0.021270; |
137 |
> |
}; break; |
138 |
> |
case 2:{ |
139 |
> |
rparHe = 1.14; |
140 |
> |
epsHe = 0.0203; |
141 |
> |
}; break; |
142 |
> |
case 3:{ |
143 |
> |
rparHe = 2.28; |
144 |
> |
epsHe = 0.020269601874; |
145 |
> |
}; break; |
146 |
> |
case 4:{ |
147 |
> |
rparHe = 2.5560; |
148 |
> |
epsHe = 0.0200; |
149 |
> |
}; break; |
150 |
> |
case 5:{ |
151 |
> |
rparHe = 1.14; |
152 |
> |
epsHe = 0.0203; |
153 |
> |
}; break; |
154 |
> |
} |
155 |
> |
|
156 |
> |
potEnergy = 0.0; |
157 |
> |
|
158 |
> |
for(i=0; i<rbMol->getNumAtoms(); i++){ |
159 |
> |
rbMol->getAtomPos(rbAtomPos, i); |
160 |
> |
|
161 |
> |
rXij = rbAtomPos[0]; |
162 |
> |
rYij = rbAtomPos[1]; |
163 |
> |
rZij = rbAtomPos[2] - probeCoor; |
164 |
> |
|
165 |
> |
rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; |
166 |
> |
|
167 |
> |
//in the interest of keeping the code more compact, we are being less efficient by placing |
168 |
> |
//a switch statement in the calculation loop |
169 |
> |
switch(forcefield){ |
170 |
> |
case 1:{ |
171 |
> |
//we are using the CHARMm force field |
172 |
> |
atomRpar = rbMol->getAtomRpar(i); |
173 |
> |
atomEps = rbMol->getAtomEps(i); |
174 |
> |
|
175 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
176 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
177 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
178 |
> |
}; break; |
179 |
> |
|
180 |
> |
case 2:{ |
181 |
> |
//we are using the AMBER force field |
182 |
> |
atomRpar = rbMol->getAtomRpar(i); |
183 |
> |
atomEps = rbMol->getAtomEps(i); |
184 |
> |
|
185 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
186 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
187 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
188 |
> |
}; break; |
189 |
> |
|
190 |
> |
case 3:{ |
191 |
> |
//we are using Allen-Tildesley LJ parameters |
192 |
> |
atomRpar = rbMol->getAtomRpar(i); |
193 |
> |
atomEps = rbMol->getAtomEps(i); |
194 |
> |
|
195 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared); |
196 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
197 |
> |
potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
198 |
> |
|
199 |
> |
}; break; |
200 |
> |
|
201 |
> |
|
202 |
> |
case 4:{ |
203 |
> |
//we are using the OPLS force field |
204 |
> |
atomRpar = rbMol->getAtomRpar(i); |
205 |
> |
atomEps = rbMol->getAtomEps(i); |
206 |
> |
|
207 |
> |
rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared); |
208 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
209 |
> |
potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
210 |
> |
}; break; |
211 |
> |
|
212 |
> |
case 5:{ |
213 |
> |
//we are using the GAFF force field |
214 |
> |
atomRpar = rbMol->getAtomRpar(i); |
215 |
> |
atomEps = rbMol->getAtomEps(i); |
216 |
> |
|
217 |
> |
rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
218 |
> |
rValPowerSix = rValSquared * rValSquared * rValSquared; |
219 |
> |
potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
220 |
> |
}; break; |
221 |
> |
} |
222 |
> |
} |
223 |
> |
} |
224 |
|
|
225 |
|
void GridBuilder::stepTheta(double increment){ |
226 |
< |
//zero out the euler angles |
227 |
< |
for (i=0; i<3; i++) |
228 |
< |
angles[i] = 0.0; |
226 |
> |
//zero out the euler angles |
227 |
> |
for (l=0; l<3; l++) |
228 |
> |
angles[i] = 0.0; |
229 |
|
|
230 |
< |
//the second euler angle is for rotation about the x-axis (we use the zxz convention) |
231 |
< |
angles[1] = increment; |
230 |
> |
//the second euler angle is for rotation about the x-axis (we use the zxz convention) |
231 |
> |
angles[1] = increment; |
232 |
|
|
233 |
< |
//obtain the rotation matrix through the rigid body class |
234 |
< |
rbMol->doEulerToRotMat(angles, rotX); |
233 |
> |
//obtain the rotation matrix through the rigid body class |
234 |
> |
rbMol->doEulerToRotMat(angles, rotX); |
235 |
|
|
236 |
< |
//rotate the rigid body |
237 |
< |
rbMol->getA(rbMatrix); |
238 |
< |
matMul3(rotX, rbMatrix, rotatedMat); |
239 |
< |
rbMol->setA(rotatedMat); |
123 |
< |
|
236 |
> |
//rotate the rigid body |
237 |
> |
rbMol->getA(rbMatrix); |
238 |
> |
matMul3(rotX, rbMatrix, rotatedMat); |
239 |
> |
rbMol->setA(rotatedMat); |
240 |
|
} |
241 |
|
|
242 |
|
void GridBuilder::stepPhi(double increment){ |
243 |
< |
//zero out the euler angles |
244 |
< |
for (i=0; i<3; i++) |
245 |
< |
angles[i] = 0.0; |
243 |
> |
//zero out the euler angles |
244 |
> |
for (l=0; l<3; l++) |
245 |
> |
angles[i] = 0.0; |
246 |
|
|
247 |
< |
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
248 |
< |
angles[0] = increment; |
247 |
> |
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
248 |
> |
angles[0] = increment; |
249 |
|
|
250 |
< |
//obtain the rotation matrix through the rigid body class |
251 |
< |
rbMol->doEulerToRotMat(angles, rotZ); |
250 |
> |
//obtain the rotation matrix through the rigid body class |
251 |
> |
rbMol->doEulerToRotMat(angles, rotZ); |
252 |
|
|
253 |
< |
//rotate the rigid body |
254 |
< |
rbMol->getA(rbMatrix); |
255 |
< |
matMul3(rotZ, rbMatrix, rotatedMat); |
256 |
< |
rbMol->setA(rotatedMat); |
141 |
< |
|
253 |
> |
//rotate the rigid body |
254 |
> |
rbMol->getA(rbMatrix); |
255 |
> |
matMul3(rotZ, rbMatrix, rotatedMat); |
256 |
> |
rbMol->setA(rotatedMat); |
257 |
|
} |
258 |
+ |
|
259 |
+ |
void GridBuilder::printGridFiles(){ |
260 |
+ |
ofstream sigmaOut("sigma.grid"); |
261 |
+ |
ofstream sOut("s.grid"); |
262 |
+ |
ofstream epsOut("eps.grid"); |
263 |
+ |
|
264 |
+ |
for (k=0; k<sigList.size(); k++){ |
265 |
+ |
sigmaOut << sigList[k] << "\n0\n"; |
266 |
+ |
sOut << sList[k] << "\n0\n"; |
267 |
+ |
epsOut << epsList[k] << "\n0\n"; |
268 |
+ |
} |
269 |
+ |
} |