4 |
|
|
5 |
|
|
6 |
|
GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { |
7 |
< |
rbMol = rb; |
8 |
< |
bandwidth = bandWidth; |
9 |
< |
thetaStep = PI / bandwidth; |
10 |
< |
thetaMin = thetaStep / 2.0; |
11 |
< |
phiStep = thetaStep * 2.0; |
7 |
> |
rbMol = rb; |
8 |
> |
bandwidth = bandWidth; |
9 |
> |
thetaStep = PI / bandwidth; |
10 |
> |
thetaMin = thetaStep / 2.0; |
11 |
> |
phiStep = thetaStep * 2.0; |
12 |
|
|
13 |
< |
//zero out the rot mats |
14 |
< |
for (i=0; i<3; i++) { |
15 |
< |
for (j=0; j<3; j++) { |
16 |
< |
rotX[i][j] = 0.0; |
17 |
< |
rotZ[i][j] = 0.0; |
18 |
< |
rbMatrix[i][j] = 0.0; |
19 |
< |
} |
20 |
< |
} |
13 |
> |
//zero out the rot mats |
14 |
> |
for (i=0; i<3; i++) { |
15 |
> |
for (j=0; j<3; j++) { |
16 |
> |
rotX[i][j] = 0.0; |
17 |
> |
rotZ[i][j] = 0.0; |
18 |
> |
rbMatrix[i][j] = 0.0; |
19 |
> |
} |
20 |
> |
} |
21 |
|
} |
22 |
|
|
23 |
|
GridBuilder::~GridBuilder() { |
24 |
|
} |
25 |
|
|
26 |
|
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, |
27 |
< |
vector<double> epsGrid){ |
28 |
< |
double startDist; |
29 |
< |
double minDist = 10.0; //minimum start distance |
27 |
> |
vector<double> epsGrid){ |
28 |
> |
double startDist; |
29 |
> |
double minDist = 10.0; //minimum start distance |
30 |
|
|
31 |
< |
//first determine the start distance - we always start at least minDist away |
32 |
< |
startDist = rbMol->findMaxExtent() + minDist; |
33 |
< |
if (startDist < minDist) |
34 |
< |
startDist = minDist; |
31 |
> |
forcefield = forceField; |
32 |
> |
|
33 |
> |
//first determine the start distance - we always start at least minDist away |
34 |
> |
startDist = rbMol->findMaxExtent() + minDist; |
35 |
> |
if (startDist < minDist) |
36 |
> |
startDist = minDist; |
37 |
|
|
38 |
< |
initBody(); |
39 |
< |
for (i=0; i<bandwidth; i++){ |
40 |
< |
for (j=0; j<bandwidth; j++){ |
41 |
< |
releaseProbe(startDist); |
38 |
> |
initBody(); |
39 |
> |
for (i=0; i<bandwidth; i++){ |
40 |
> |
for (j=0; j<bandwidth; j++){ |
41 |
> |
releaseProbe(startDist); |
42 |
|
|
43 |
< |
sigmaGrid.push_back(sigDist); |
44 |
< |
sGrid.push_back(sDist); |
45 |
< |
epsGrid.push_back(epsVal); |
43 |
> |
sigmaGrid.push_back(sigDist); |
44 |
> |
sGrid.push_back(sDist); |
45 |
> |
epsGrid.push_back(epsVal); |
46 |
|
|
47 |
< |
stepPhi(phiStep); |
48 |
< |
} |
49 |
< |
stepTheta(thetaStep); |
50 |
< |
} |
49 |
< |
|
47 |
> |
stepPhi(phiStep); |
48 |
> |
} |
49 |
> |
stepTheta(thetaStep); |
50 |
> |
} |
51 |
|
} |
52 |
|
|
53 |
|
void GridBuilder::initBody(){ |
54 |
< |
//set up the rigid body in the starting configuration |
55 |
< |
stepTheta(thetaMin); |
54 |
> |
//set up the rigid body in the starting configuration |
55 |
> |
stepTheta(thetaMin); |
56 |
|
} |
57 |
|
|
58 |
|
void GridBuilder::releaseProbe(double farPos){ |
59 |
< |
int tooClose; |
60 |
< |
double tempPotEnergy; |
61 |
< |
double interpRange; |
62 |
< |
double interpFrac; |
59 |
> |
int tooClose; |
60 |
> |
double tempPotEnergy; |
61 |
> |
double interpRange; |
62 |
> |
double interpFrac; |
63 |
|
|
64 |
< |
probeCoor = farPos; |
65 |
< |
potProgress.clear(); |
66 |
< |
distProgress.clear(); |
67 |
< |
tooClose = 0; |
68 |
< |
epsVal = 0; |
69 |
< |
rhoStep = 0.1; //the distance the probe atom moves between steps |
64 |
> |
probeCoor = farPos; |
65 |
> |
potProgress.clear(); |
66 |
> |
distProgress.clear(); |
67 |
> |
tooClose = 0; |
68 |
> |
epsVal = 0; |
69 |
> |
rhoStep = 0.1; //the distance the probe atom moves between steps |
70 |
|
|
71 |
|
|
72 |
< |
while (!tooClose){ |
73 |
< |
calcEnergy(); |
74 |
< |
potProgress.push_back(potEnergy); |
75 |
< |
distProgress.push_back(probeCoor); |
72 |
> |
while (!tooClose){ |
73 |
> |
calcEnergy(); |
74 |
> |
potProgress.push_back(potEnergy); |
75 |
> |
distProgress.push_back(probeCoor); |
76 |
|
|
77 |
< |
//if we've reached a new minimum, save the value and position |
78 |
< |
if (potEnergy < epsVal){ |
79 |
< |
epsVal = potEnergy; |
80 |
< |
sDist = probeCoor; |
81 |
< |
} |
77 |
> |
//if we've reached a new minimum, save the value and position |
78 |
> |
if (potEnergy < epsVal){ |
79 |
> |
epsVal = potEnergy; |
80 |
> |
sDist = probeCoor; |
81 |
> |
} |
82 |
|
|
83 |
< |
//test if the probe reached the origin - if so, stop stepping closer |
84 |
< |
if (probeCoor < 0){ |
85 |
< |
sigDist = 0.0; |
86 |
< |
tooClose = 1; |
87 |
< |
} |
83 |
> |
//test if the probe reached the origin - if so, stop stepping closer |
84 |
> |
if (probeCoor < 0){ |
85 |
> |
sigDist = 0.0; |
86 |
> |
tooClose = 1; |
87 |
> |
} |
88 |
|
|
89 |
< |
//test if the probe beyond the contact point - if not, take a step closer |
90 |
< |
if (potEnergy < 0){ |
91 |
< |
sigDist = probeCoor; |
92 |
< |
tempPotEnergy = potEnergy; |
93 |
< |
probeCoor -= rhoStep; |
94 |
< |
} |
95 |
< |
else { |
96 |
< |
//do a linear interpolation to obtain the sigDist |
97 |
< |
interpRange = potEnergy - tempPotEnergy; |
98 |
< |
interpFrac = potEnergy / interpRange; |
99 |
< |
interpFrac = interpFrac * rhoStep; |
100 |
< |
sigDist = probeCoor + interpFrac; |
89 |
> |
//test if the probe beyond the contact point - if not, take a step closer |
90 |
> |
if (potEnergy < 0){ |
91 |
> |
sigDist = probeCoor; |
92 |
> |
tempPotEnergy = potEnergy; |
93 |
> |
probeCoor -= rhoStep; |
94 |
> |
} |
95 |
> |
else { |
96 |
> |
//do a linear interpolation to obtain the sigDist |
97 |
> |
interpRange = potEnergy - tempPotEnergy; |
98 |
> |
interpFrac = potEnergy / interpRange; |
99 |
> |
interpFrac = interpFrac * rhoStep; |
100 |
> |
sigDist = probeCoor + interpFrac; |
101 |
|
|
102 |
< |
//end the loop |
103 |
< |
tooClose = 1; |
104 |
< |
} |
105 |
< |
} |
102 |
> |
//end the loop |
103 |
> |
tooClose = 1; |
104 |
> |
} |
105 |
> |
} |
106 |
|
} |
107 |
|
|
108 |
|
void GridBuilder::calcEnergy(){ |
110 |
|
} |
111 |
|
|
112 |
|
void GridBuilder::stepTheta(double increment){ |
113 |
< |
//zero out the euler angles |
114 |
< |
for (i=0; i<3; i++) |
115 |
< |
angles[i] = 0.0; |
113 |
> |
//zero out the euler angles |
114 |
> |
for (i=0; i<3; i++) |
115 |
> |
angles[i] = 0.0; |
116 |
|
|
117 |
< |
//the second euler angle is for rotation about the x-axis (we use the zxz convention) |
118 |
< |
angles[1] = increment; |
117 |
> |
//the second euler angle is for rotation about the x-axis (we use the zxz convention) |
118 |
> |
angles[1] = increment; |
119 |
|
|
120 |
< |
//obtain the rotation matrix through the rigid body class |
121 |
< |
rbMol->doEulerToRotMat(angles, rotX); |
120 |
> |
//obtain the rotation matrix through the rigid body class |
121 |
> |
rbMol->doEulerToRotMat(angles, rotX); |
122 |
|
|
123 |
< |
//rotate the rigid body |
124 |
< |
rbMol->getA(rbMatrix); |
125 |
< |
matMul3(rotX, rbMatrix, rotatedMat); |
126 |
< |
rbMol->setA(rotatedMat); |
126 |
< |
|
123 |
> |
//rotate the rigid body |
124 |
> |
rbMol->getA(rbMatrix); |
125 |
> |
matMul3(rotX, rbMatrix, rotatedMat); |
126 |
> |
rbMol->setA(rotatedMat); |
127 |
|
} |
128 |
|
|
129 |
|
void GridBuilder::stepPhi(double increment){ |
130 |
< |
//zero out the euler angles |
131 |
< |
for (i=0; i<3; i++) |
132 |
< |
angles[i] = 0.0; |
130 |
> |
//zero out the euler angles |
131 |
> |
for (i=0; i<3; i++) |
132 |
> |
angles[i] = 0.0; |
133 |
|
|
134 |
< |
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
135 |
< |
angles[0] = increment; |
134 |
> |
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
135 |
> |
angles[0] = increment; |
136 |
|
|
137 |
< |
//obtain the rotation matrix through the rigid body class |
138 |
< |
rbMol->doEulerToRotMat(angles, rotZ); |
137 |
> |
//obtain the rotation matrix through the rigid body class |
138 |
> |
rbMol->doEulerToRotMat(angles, rotZ); |
139 |
|
|
140 |
< |
//rotate the rigid body |
141 |
< |
rbMol->getA(rbMatrix); |
142 |
< |
matMul3(rotZ, rbMatrix, rotatedMat); |
143 |
< |
rbMol->setA(rotatedMat); |
144 |
< |
|
140 |
> |
//rotate the rigid body |
141 |
> |
rbMol->getA(rbMatrix); |
142 |
> |
matMul3(rotZ, rbMatrix, rotatedMat); |
143 |
> |
rbMol->setA(rotatedMat); |
144 |
|
} |