1 |
#include "GridBuilder.hpp" |
2 |
#include "MatVec3.h" |
3 |
#define PI 3.14159265359 |
4 |
|
5 |
|
6 |
GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { |
7 |
rbMol = rb; |
8 |
bandwidth = bandWidth; |
9 |
thetaStep = PI / bandwidth; |
10 |
thetaMin = thetaStep / 2.0; |
11 |
phiStep = thetaStep * 2.0; |
12 |
|
13 |
//zero out the rot mats |
14 |
for (i=0; i<3; i++) { |
15 |
for (j=0; j<3; j++) { |
16 |
rotX[i][j] = 0.0; |
17 |
rotZ[i][j] = 0.0; |
18 |
rbMatrix[i][j] = 0.0; |
19 |
} |
20 |
} |
21 |
} |
22 |
|
23 |
GridBuilder::~GridBuilder() { |
24 |
} |
25 |
|
26 |
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, |
27 |
vector<double> epsGrid){ |
28 |
double startDist; |
29 |
double minDist = 10.0; //minimum start distance |
30 |
|
31 |
//first determine the start distance - we always start at least minDist away |
32 |
startDist = rbMol->findMaxExtent() + minDist; |
33 |
if (startDist < minDist) |
34 |
startDist = minDist; |
35 |
|
36 |
initBody(); |
37 |
for (i=0; i<bandwidth; i++){ |
38 |
for (j=0; j<bandwidth; j++){ |
39 |
releaseProbe(startDist); |
40 |
|
41 |
sigmaGrid.push_back(sigDist); |
42 |
sGrid.push_back(sDist); |
43 |
epsGrid.push_back(epsVal); |
44 |
|
45 |
stepPhi(phiStep); |
46 |
} |
47 |
stepTheta(thetaStep); |
48 |
} |
49 |
|
50 |
} |
51 |
|
52 |
void GridBuilder::initBody(){ |
53 |
//set up the rigid body in the starting configuration |
54 |
stepTheta(thetaMin); |
55 |
} |
56 |
|
57 |
void GridBuilder::releaseProbe(double farPos){ |
58 |
int tooClose; |
59 |
double tempPotEnergy; |
60 |
double interpRange; |
61 |
double interpFrac; |
62 |
|
63 |
probeCoor = farPos; |
64 |
potProgress.clear(); |
65 |
distProgress.clear(); |
66 |
tooClose = 0; |
67 |
epsVal = 0; |
68 |
rhoStep = 0.1; //the distance the probe atom moves between steps |
69 |
|
70 |
|
71 |
while (!tooClose){ |
72 |
calcEnergy(); |
73 |
potProgress.push_back(potEnergy); |
74 |
distProgress.push_back(probeCoor); |
75 |
|
76 |
//if we've reached a new minimum, save the value and position |
77 |
if (potEnergy < epsVal){ |
78 |
epsVal = potEnergy; |
79 |
sDist = probeCoor; |
80 |
} |
81 |
|
82 |
//test if the probe reached the origin - if so, stop stepping closer |
83 |
if (probeCoor < 0){ |
84 |
sigDist = 0.0; |
85 |
tooClose = 1; |
86 |
} |
87 |
|
88 |
//test if the probe beyond the contact point - if not, take a step closer |
89 |
if (potEnergy < 0){ |
90 |
sigDist = probeCoor; |
91 |
tempPotEnergy = potEnergy; |
92 |
probeCoor -= rhoStep; |
93 |
} |
94 |
else { |
95 |
//do a linear interpolation to obtain the sigDist |
96 |
interpRange = potEnergy - tempPotEnergy; |
97 |
interpFrac = potEnergy / interpRange; |
98 |
interpFrac = interpFrac * rhoStep; |
99 |
sigDist = probeCoor + interpFrac; |
100 |
|
101 |
//end the loop |
102 |
tooClose = 1; |
103 |
} |
104 |
} |
105 |
} |
106 |
|
107 |
void GridBuilder::calcEnergy(){ |
108 |
|
109 |
} |
110 |
|
111 |
void GridBuilder::stepTheta(double increment){ |
112 |
//zero out the euler angles |
113 |
for (i=0; i<3; i++) |
114 |
angles[i] = 0.0; |
115 |
|
116 |
//the second euler angle is for rotation about the x-axis (we use the zxz convention) |
117 |
angles[1] = increment; |
118 |
|
119 |
//obtain the rotation matrix through the rigid body class |
120 |
rbMol->doEulerToRotMat(angles, rotX); |
121 |
|
122 |
//rotate the rigid body |
123 |
rbMol->getA(rbMatrix); |
124 |
matMul3(rotX, rbMatrix, rotatedMat); |
125 |
rbMol->setA(rotatedMat); |
126 |
|
127 |
} |
128 |
|
129 |
void GridBuilder::stepPhi(double increment){ |
130 |
//zero out the euler angles |
131 |
for (i=0; i<3; i++) |
132 |
angles[i] = 0.0; |
133 |
|
134 |
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
135 |
angles[0] = increment; |
136 |
|
137 |
//obtain the rotation matrix through the rigid body class |
138 |
rbMol->doEulerToRotMat(angles, rotZ); |
139 |
|
140 |
//rotate the rigid body |
141 |
rbMol->getA(rbMatrix); |
142 |
matMul3(rotZ, rbMatrix, rotatedMat); |
143 |
rbMol->setA(rotatedMat); |
144 |
|
145 |
} |