| 1 | chrisfen | 1277 | #include "GridBuilder.hpp" | 
| 2 |  |  | #define PI 3.14159265359 | 
| 3 |  |  |  | 
| 4 |  |  |  | 
| 5 | chrisfen | 1285 | GridBuilder::GridBuilder(RigidBody* rb, int gridWidth) { | 
| 6 | chrisfen | 1280 | rbMol = rb; | 
| 7 | chrisfen | 1285 | gridwidth = gridWidth; | 
| 8 |  |  | thetaStep = PI / gridwidth; | 
| 9 | chrisfen | 1280 | thetaMin = thetaStep / 2.0; | 
| 10 |  |  | phiStep = thetaStep * 2.0; | 
| 11 | chrisfen | 1277 | } | 
| 12 |  |  |  | 
| 13 |  |  | GridBuilder::~GridBuilder() { | 
| 14 |  |  | } | 
| 15 |  |  |  | 
| 16 | gezelter | 1283 | void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, | 
| 17 |  |  | vector<double> sGrid, vector<double> epsGrid){ | 
| 18 | chrisfen | 1281 | ofstream sigmaOut("sigma.grid"); | 
| 19 |  |  | ofstream sOut("s.grid"); | 
| 20 |  |  | ofstream epsOut("eps.grid"); | 
| 21 | chrisfen | 1280 | double startDist; | 
| 22 | chrisfen | 1282 | double phiVal; | 
| 23 |  |  | double thetaVal; | 
| 24 | chrisfen | 1285 | double sigTemp, sTemp, epsTemp, sigProbe; | 
| 25 | chrisfen | 1280 | double minDist = 10.0; //minimum start distance | 
| 26 | chrisfen | 1277 |  | 
| 27 | chrisfen | 1287 | sigList = sigmaGrid; | 
| 28 | chrisfen | 1281 | sList = sGrid; | 
| 29 |  |  | epsList = epsGrid; | 
| 30 | chrisfen | 1280 | forcefield = forceField; | 
| 31 | chrisfen | 1285 |  | 
| 32 |  |  | //load the probe atom parameters | 
| 33 |  |  | switch(forcefield){ | 
| 34 |  |  | case 1:{ | 
| 35 |  |  | rparHe = 1.4800; | 
| 36 |  |  | epsHe = -0.021270; | 
| 37 |  |  | }; break; | 
| 38 |  |  | case 2:{ | 
| 39 |  |  | rparHe = 1.14; | 
| 40 |  |  | epsHe = 0.0203; | 
| 41 |  |  | }; break; | 
| 42 |  |  | case 3:{ | 
| 43 |  |  | rparHe = 2.28; | 
| 44 |  |  | epsHe = 0.020269601874; | 
| 45 |  |  | }; break; | 
| 46 |  |  | case 4:{ | 
| 47 |  |  | rparHe = 2.5560; | 
| 48 |  |  | epsHe = 0.0200; | 
| 49 |  |  | }; break; | 
| 50 |  |  | case 5:{ | 
| 51 |  |  | rparHe = 1.14; | 
| 52 |  |  | epsHe = 0.0203; | 
| 53 |  |  | }; break; | 
| 54 |  |  | } | 
| 55 | chrisfen | 1280 |  | 
| 56 | chrisfen | 1285 | if (rparHe < 2.2) | 
| 57 |  |  | sigProbe = 2*rparHe/1.12246204831; | 
| 58 |  |  | else | 
| 59 |  |  | sigProbe = rparHe; | 
| 60 |  |  |  | 
| 61 |  |  | //determine the start distance - we always start at least minDist away | 
| 62 | chrisfen | 1280 | startDist = rbMol->findMaxExtent() + minDist; | 
| 63 |  |  | if (startDist < minDist) | 
| 64 |  |  | startDist = minDist; | 
| 65 | chrisfen | 1281 |  | 
| 66 | chrisfen | 1282 | //set the initial orientation of the body and loop over theta values | 
| 67 | gezelter | 1283 |  | 
| 68 | chrisfen | 1285 | for (k =0; k < gridwidth; k++) { | 
| 69 | gezelter | 1283 | thetaVal = thetaMin + k*thetaStep; | 
| 70 | chrisfen | 1285 | for (j=0; j < gridwidth; j++) { | 
| 71 | chrisfen | 1308 | //s2kit10 is actually taking a grid from -pi/2 to 3pi/3, not 0 to 2pi... | 
| 72 |  |  | phiVal = j*phiStep - 0.5*PI; | 
| 73 |  |  | if (phiVal<0.0) | 
| 74 |  |  | phiVal += 2*PI; | 
| 75 | gezelter | 1283 |  | 
| 76 |  |  | rbMol->setEuler(0.0, thetaVal, phiVal); | 
| 77 |  |  |  | 
| 78 | chrisfen | 1280 | releaseProbe(startDist); | 
| 79 | chrisfen | 1279 |  | 
| 80 | chrisfen | 1285 | //translate the values to sigma, s, and epsilon of the rigid body | 
| 81 |  |  | sigTemp = 2*sigDist - sigProbe; | 
| 82 |  |  | sTemp = (2*(sDist - sigDist))/(0.122462048309) - sigProbe; | 
| 83 |  |  | epsTemp = pow(epsVal, 2)/fabs(epsHe); | 
| 84 |  |  |  | 
| 85 |  |  | sigList.push_back(sigTemp); | 
| 86 |  |  | sList.push_back(sTemp); | 
| 87 |  |  | epsList.push_back(epsTemp); | 
| 88 | chrisfen | 1280 | } | 
| 89 |  |  | } | 
| 90 | chrisfen | 1277 | } | 
| 91 |  |  |  | 
| 92 |  |  | void GridBuilder::releaseProbe(double farPos){ | 
| 93 | chrisfen | 1280 | int tooClose; | 
| 94 |  |  | double tempPotEnergy; | 
| 95 |  |  | double interpRange; | 
| 96 |  |  | double interpFrac; | 
| 97 | chrisfen | 1277 |  | 
| 98 | chrisfen | 1280 | probeCoor = farPos; | 
| 99 |  |  | potProgress.clear(); | 
| 100 |  |  | distProgress.clear(); | 
| 101 |  |  | tooClose = 0; | 
| 102 |  |  | epsVal = 0; | 
| 103 |  |  | rhoStep = 0.1; //the distance the probe atom moves between steps | 
| 104 | gezelter | 1283 |  | 
| 105 | chrisfen | 1280 | while (!tooClose){ | 
| 106 |  |  | calcEnergy(); | 
| 107 |  |  | potProgress.push_back(potEnergy); | 
| 108 |  |  | distProgress.push_back(probeCoor); | 
| 109 | chrisfen | 1277 |  | 
| 110 | chrisfen | 1280 | //if we've reached a new minimum, save the value and position | 
| 111 |  |  | if (potEnergy < epsVal){ | 
| 112 |  |  | epsVal = potEnergy; | 
| 113 |  |  | sDist = probeCoor; | 
| 114 |  |  | } | 
| 115 | chrisfen | 1277 |  | 
| 116 | chrisfen | 1280 | //test if the probe reached the origin - if so, stop stepping closer | 
| 117 |  |  | if (probeCoor < 0){ | 
| 118 |  |  | sigDist = 0.0; | 
| 119 |  |  | tooClose = 1; | 
| 120 |  |  | } | 
| 121 | chrisfen | 1277 |  | 
| 122 | chrisfen | 1280 | //test if the probe beyond the contact point - if not, take a step closer | 
| 123 |  |  | if (potEnergy < 0){ | 
| 124 |  |  | sigDist = probeCoor; | 
| 125 |  |  | tempPotEnergy = potEnergy; | 
| 126 |  |  | probeCoor -= rhoStep; | 
| 127 |  |  | } | 
| 128 |  |  | else { | 
| 129 |  |  | //do a linear interpolation to obtain the sigDist | 
| 130 |  |  | interpRange = potEnergy - tempPotEnergy; | 
| 131 |  |  | interpFrac = potEnergy / interpRange; | 
| 132 |  |  | interpFrac = interpFrac * rhoStep; | 
| 133 |  |  | sigDist = probeCoor + interpFrac; | 
| 134 | chrisfen | 1277 |  | 
| 135 | chrisfen | 1280 | //end the loop | 
| 136 |  |  | tooClose = 1; | 
| 137 |  |  | } | 
| 138 |  |  | } | 
| 139 | chrisfen | 1277 | } | 
| 140 |  |  |  | 
| 141 |  |  | void GridBuilder::calcEnergy(){ | 
| 142 | chrisfen | 1281 | double rXij, rYij, rZij; | 
| 143 |  |  | double rijSquared; | 
| 144 |  |  | double rValSquared, rValPowerSix; | 
| 145 |  |  | double atomRpar, atomEps; | 
| 146 |  |  | double rbAtomPos[3]; | 
| 147 | chrisfen | 1285 |  | 
| 148 | chrisfen | 1281 | potEnergy = 0.0; | 
| 149 | gezelter | 1283 |  | 
| 150 | chrisfen | 1281 | for(i=0; i<rbMol->getNumAtoms(); i++){ | 
| 151 |  |  | rbMol->getAtomPos(rbAtomPos, i); | 
| 152 |  |  |  | 
| 153 |  |  | rXij = rbAtomPos[0]; | 
| 154 |  |  | rYij = rbAtomPos[1]; | 
| 155 |  |  | rZij = rbAtomPos[2] - probeCoor; | 
| 156 |  |  |  | 
| 157 |  |  | rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; | 
| 158 |  |  |  | 
| 159 | chrisfen | 1285 | //in the interest of keeping the code more compact, we are being less | 
| 160 |  |  | //efficient by placing a switch statement in the calculation loop | 
| 161 | chrisfen | 1281 | switch(forcefield){ | 
| 162 |  |  | case 1:{ | 
| 163 |  |  | //we are using the CHARMm force field | 
| 164 |  |  | atomRpar = rbMol->getAtomRpar(i); | 
| 165 |  |  | atomEps = rbMol->getAtomEps(i); | 
| 166 |  |  |  | 
| 167 |  |  | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); | 
| 168 |  |  | rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 169 |  |  | potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); | 
| 170 |  |  | }; break; | 
| 171 |  |  |  | 
| 172 |  |  | case 2:{ | 
| 173 |  |  | //we are using the AMBER force field | 
| 174 |  |  | atomRpar = rbMol->getAtomRpar(i); | 
| 175 |  |  | atomEps = rbMol->getAtomEps(i); | 
| 176 |  |  |  | 
| 177 |  |  | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); | 
| 178 |  |  | rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 179 |  |  | potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); | 
| 180 |  |  | }; break; | 
| 181 |  |  |  | 
| 182 |  |  | case 3:{ | 
| 183 |  |  | //we are using Allen-Tildesley LJ parameters | 
| 184 |  |  | atomRpar = rbMol->getAtomRpar(i); | 
| 185 |  |  | atomEps = rbMol->getAtomEps(i); | 
| 186 |  |  |  | 
| 187 |  |  | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared); | 
| 188 |  |  | rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 189 |  |  | potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); | 
| 190 |  |  |  | 
| 191 |  |  | }; break; | 
| 192 |  |  |  | 
| 193 |  |  | case 4:{ | 
| 194 |  |  | //we are using the OPLS force field | 
| 195 |  |  | atomRpar = rbMol->getAtomRpar(i); | 
| 196 |  |  | atomEps = rbMol->getAtomEps(i); | 
| 197 |  |  |  | 
| 198 |  |  | rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared); | 
| 199 |  |  | rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 200 |  |  | potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); | 
| 201 |  |  | }; break; | 
| 202 |  |  |  | 
| 203 |  |  | case 5:{ | 
| 204 |  |  | //we are using the GAFF force field | 
| 205 |  |  | atomRpar = rbMol->getAtomRpar(i); | 
| 206 |  |  | atomEps = rbMol->getAtomEps(i); | 
| 207 |  |  |  | 
| 208 |  |  | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); | 
| 209 |  |  | rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 210 |  |  | potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); | 
| 211 |  |  | }; break; | 
| 212 |  |  | } | 
| 213 |  |  | } | 
| 214 |  |  | } | 
| 215 | chrisfen | 1277 |  | 
| 216 | chrisfen | 1281 | void GridBuilder::printGridFiles(){ | 
| 217 |  |  | ofstream sigmaOut("sigma.grid"); | 
| 218 |  |  | ofstream sOut("s.grid"); | 
| 219 |  |  | ofstream epsOut("eps.grid"); | 
| 220 |  |  |  | 
| 221 |  |  | for (k=0; k<sigList.size(); k++){ | 
| 222 |  |  | sigmaOut << sigList[k] << "\n0\n"; | 
| 223 |  |  | sOut << sList[k] << "\n0\n"; | 
| 224 |  |  | epsOut << epsList[k] << "\n0\n"; | 
| 225 |  |  | } | 
| 226 | gezelter | 1283 | } | 
| 227 | chrisfen | 1287 |  |