| 1 | 
chrisfen | 
1277 | 
#include "GridBuilder.hpp" | 
| 2 | 
  | 
  | 
#include "MatVec3.h" | 
| 3 | 
  | 
  | 
#define PI 3.14159265359 | 
| 4 | 
  | 
  | 
 | 
| 5 | 
  | 
  | 
 | 
| 6 | 
  | 
  | 
GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { | 
| 7 | 
chrisfen | 
1280 | 
  rbMol = rb; | 
| 8 | 
  | 
  | 
  bandwidth = bandWidth; | 
| 9 | 
  | 
  | 
  thetaStep = PI / bandwidth; | 
| 10 | 
  | 
  | 
  thetaMin = thetaStep / 2.0; | 
| 11 | 
  | 
  | 
  phiStep = thetaStep * 2.0; | 
| 12 | 
chrisfen | 
1277 | 
         | 
| 13 | 
chrisfen | 
1280 | 
  //zero out the rot mats | 
| 14 | 
  | 
  | 
  for (i=0; i<3; i++) { | 
| 15 | 
  | 
  | 
    for (j=0; j<3; j++) { | 
| 16 | 
  | 
  | 
      rotX[i][j] = 0.0; | 
| 17 | 
  | 
  | 
      rotZ[i][j] = 0.0; | 
| 18 | 
  | 
  | 
      rbMatrix[i][j] = 0.0; | 
| 19 | 
  | 
  | 
    } | 
| 20 | 
  | 
  | 
  } | 
| 21 | 
chrisfen | 
1277 | 
} | 
| 22 | 
  | 
  | 
 | 
| 23 | 
  | 
  | 
GridBuilder::~GridBuilder() { | 
| 24 | 
  | 
  | 
} | 
| 25 | 
  | 
  | 
 | 
| 26 | 
  | 
  | 
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, | 
| 27 | 
chrisfen | 
1280 | 
                              vector<double> epsGrid){ | 
| 28 | 
chrisfen | 
1281 | 
  ofstream sigmaOut("sigma.grid"); | 
| 29 | 
  | 
  | 
  ofstream sOut("s.grid"); | 
| 30 | 
  | 
  | 
  ofstream epsOut("eps.grid"); | 
| 31 | 
chrisfen | 
1280 | 
  double startDist; | 
| 32 | 
chrisfen | 
1282 | 
  double phiVal; | 
| 33 | 
  | 
  | 
  double thetaVal; | 
| 34 | 
chrisfen | 
1280 | 
  double minDist = 10.0; //minimum start distance | 
| 35 | 
chrisfen | 
1277 | 
         | 
| 36 | 
chrisfen | 
1281 | 
  sList = sGrid; | 
| 37 | 
  | 
  | 
  sigList = sigmaGrid; | 
| 38 | 
  | 
  | 
  epsList = epsGrid; | 
| 39 | 
chrisfen | 
1280 | 
  forcefield = forceField; | 
| 40 | 
  | 
  | 
     | 
| 41 | 
  | 
  | 
  //first determine the start distance - we always start at least minDist away | 
| 42 | 
  | 
  | 
  startDist = rbMol->findMaxExtent() + minDist; | 
| 43 | 
  | 
  | 
  if (startDist < minDist) | 
| 44 | 
  | 
  | 
    startDist = minDist; | 
| 45 | 
chrisfen | 
1281 | 
 | 
| 46 | 
chrisfen | 
1282 | 
  //set the initial orientation of the body and loop over theta values | 
| 47 | 
  | 
  | 
  phiVal = 0.0; | 
| 48 | 
  | 
  | 
  thetaVal = thetaMin; | 
| 49 | 
  | 
  | 
  rotBody(phiVal, thetaVal); | 
| 50 | 
  | 
  | 
  for (k=0; k<bandwidth; k++){   | 
| 51 | 
  | 
  | 
        //loop over phi values starting with phi = 0.0 | 
| 52 | 
chrisfen | 
1280 | 
    for (j=0; j<bandwidth; j++){ | 
| 53 | 
  | 
  | 
      releaseProbe(startDist); | 
| 54 | 
chrisfen | 
1279 | 
 | 
| 55 | 
chrisfen | 
1281 | 
      sigList.push_back(sigDist); | 
| 56 | 
  | 
  | 
      sList.push_back(sDist); | 
| 57 | 
  | 
  | 
      epsList.push_back(epsVal); | 
| 58 | 
chrisfen | 
1282 | 
       | 
| 59 | 
  | 
  | 
      phiVal += phiStep; | 
| 60 | 
  | 
  | 
      rotBody(phiVal, thetaVal); | 
| 61 | 
chrisfen | 
1280 | 
    } | 
| 62 | 
chrisfen | 
1282 | 
    phiVal = 0.0; | 
| 63 | 
  | 
  | 
    thetaVal += thetaStep; | 
| 64 | 
  | 
  | 
    rotBody(phiVal, thetaVal); | 
| 65 | 
  | 
  | 
    printf("step theta %i\n",k); | 
| 66 | 
chrisfen | 
1280 | 
  }              | 
| 67 | 
chrisfen | 
1277 | 
} | 
| 68 | 
  | 
  | 
 | 
| 69 | 
  | 
  | 
void GridBuilder::releaseProbe(double farPos){ | 
| 70 | 
chrisfen | 
1280 | 
  int tooClose; | 
| 71 | 
  | 
  | 
  double tempPotEnergy; | 
| 72 | 
  | 
  | 
  double interpRange; | 
| 73 | 
  | 
  | 
  double interpFrac; | 
| 74 | 
chrisfen | 
1277 | 
         | 
| 75 | 
chrisfen | 
1280 | 
  probeCoor = farPos; | 
| 76 | 
  | 
  | 
  potProgress.clear(); | 
| 77 | 
  | 
  | 
  distProgress.clear(); | 
| 78 | 
  | 
  | 
  tooClose = 0; | 
| 79 | 
  | 
  | 
  epsVal = 0; | 
| 80 | 
  | 
  | 
  rhoStep = 0.1; //the distance the probe atom moves between steps | 
| 81 | 
chrisfen | 
1277 | 
         | 
| 82 | 
chrisfen | 
1279 | 
         | 
| 83 | 
chrisfen | 
1280 | 
  while (!tooClose){ | 
| 84 | 
  | 
  | 
    calcEnergy(); | 
| 85 | 
  | 
  | 
    potProgress.push_back(potEnergy); | 
| 86 | 
  | 
  | 
    distProgress.push_back(probeCoor); | 
| 87 | 
chrisfen | 
1277 | 
                 | 
| 88 | 
chrisfen | 
1280 | 
    //if we've reached a new minimum, save the value and position | 
| 89 | 
  | 
  | 
    if (potEnergy < epsVal){ | 
| 90 | 
  | 
  | 
      epsVal = potEnergy; | 
| 91 | 
  | 
  | 
      sDist = probeCoor; | 
| 92 | 
  | 
  | 
    } | 
| 93 | 
chrisfen | 
1277 | 
                 | 
| 94 | 
chrisfen | 
1280 | 
    //test if the probe reached the origin - if so, stop stepping closer | 
| 95 | 
  | 
  | 
    if (probeCoor < 0){ | 
| 96 | 
  | 
  | 
      sigDist = 0.0; | 
| 97 | 
  | 
  | 
      tooClose = 1; | 
| 98 | 
  | 
  | 
    } | 
| 99 | 
chrisfen | 
1277 | 
                 | 
| 100 | 
chrisfen | 
1280 | 
    //test if the probe beyond the contact point - if not, take a step closer | 
| 101 | 
  | 
  | 
    if (potEnergy < 0){ | 
| 102 | 
  | 
  | 
      sigDist = probeCoor; | 
| 103 | 
  | 
  | 
      tempPotEnergy = potEnergy; | 
| 104 | 
  | 
  | 
      probeCoor -= rhoStep; | 
| 105 | 
  | 
  | 
    } | 
| 106 | 
  | 
  | 
    else { | 
| 107 | 
  | 
  | 
      //do a linear interpolation to obtain the sigDist  | 
| 108 | 
  | 
  | 
      interpRange = potEnergy - tempPotEnergy; | 
| 109 | 
  | 
  | 
      interpFrac = potEnergy / interpRange; | 
| 110 | 
  | 
  | 
      interpFrac = interpFrac * rhoStep; | 
| 111 | 
  | 
  | 
      sigDist = probeCoor + interpFrac; | 
| 112 | 
chrisfen | 
1277 | 
                         | 
| 113 | 
chrisfen | 
1280 | 
      //end the loop | 
| 114 | 
  | 
  | 
      tooClose = 1; | 
| 115 | 
  | 
  | 
    } | 
| 116 | 
  | 
  | 
  } | 
| 117 | 
chrisfen | 
1277 | 
} | 
| 118 | 
  | 
  | 
 | 
| 119 | 
  | 
  | 
void GridBuilder::calcEnergy(){ | 
| 120 | 
chrisfen | 
1281 | 
  double rXij, rYij, rZij; | 
| 121 | 
  | 
  | 
  double rijSquared; | 
| 122 | 
  | 
  | 
  double rValSquared, rValPowerSix; | 
| 123 | 
  | 
  | 
  double rparHe, epsHe; | 
| 124 | 
  | 
  | 
  double atomRpar, atomEps; | 
| 125 | 
  | 
  | 
  double rbAtomPos[3]; | 
| 126 | 
  | 
  | 
   | 
| 127 | 
  | 
  | 
  //first get the probe atom parameters | 
| 128 | 
  | 
  | 
  switch(forcefield){ | 
| 129 | 
  | 
  | 
    case 1:{ | 
| 130 | 
  | 
  | 
      rparHe = 1.4800; | 
| 131 | 
  | 
  | 
      epsHe = -0.021270; | 
| 132 | 
  | 
  | 
    }; break; | 
| 133 | 
  | 
  | 
    case 2:{ | 
| 134 | 
  | 
  | 
      rparHe = 1.14; | 
| 135 | 
  | 
  | 
      epsHe = 0.0203; | 
| 136 | 
  | 
  | 
    }; break; | 
| 137 | 
  | 
  | 
    case 3:{ | 
| 138 | 
  | 
  | 
      rparHe = 2.28; | 
| 139 | 
  | 
  | 
      epsHe = 0.020269601874; | 
| 140 | 
  | 
  | 
    }; break; | 
| 141 | 
  | 
  | 
    case 4:{ | 
| 142 | 
  | 
  | 
      rparHe = 2.5560; | 
| 143 | 
  | 
  | 
      epsHe = 0.0200; | 
| 144 | 
  | 
  | 
    }; break; | 
| 145 | 
  | 
  | 
    case 5:{ | 
| 146 | 
  | 
  | 
      rparHe = 1.14; | 
| 147 | 
  | 
  | 
      epsHe = 0.0203; | 
| 148 | 
  | 
  | 
    }; break; | 
| 149 | 
  | 
  | 
  } | 
| 150 | 
  | 
  | 
   | 
| 151 | 
  | 
  | 
  potEnergy = 0.0; | 
| 152 | 
  | 
  | 
   | 
| 153 | 
  | 
  | 
  for(i=0; i<rbMol->getNumAtoms(); i++){ | 
| 154 | 
  | 
  | 
    rbMol->getAtomPos(rbAtomPos, i); | 
| 155 | 
  | 
  | 
     | 
| 156 | 
  | 
  | 
    rXij = rbAtomPos[0]; | 
| 157 | 
  | 
  | 
    rYij = rbAtomPos[1]; | 
| 158 | 
  | 
  | 
    rZij = rbAtomPos[2] - probeCoor; | 
| 159 | 
  | 
  | 
     | 
| 160 | 
  | 
  | 
    rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; | 
| 161 | 
  | 
  | 
     | 
| 162 | 
  | 
  | 
    //in the interest of keeping the code more compact, we are being less efficient by placing  | 
| 163 | 
  | 
  | 
    //a switch statement in the calculation loop | 
| 164 | 
  | 
  | 
    switch(forcefield){ | 
| 165 | 
  | 
  | 
      case 1:{ | 
| 166 | 
  | 
  | 
        //we are using the CHARMm force field | 
| 167 | 
  | 
  | 
        atomRpar = rbMol->getAtomRpar(i); | 
| 168 | 
  | 
  | 
        atomEps = rbMol->getAtomEps(i); | 
| 169 | 
  | 
  | 
         | 
| 170 | 
  | 
  | 
        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); | 
| 171 | 
  | 
  | 
        rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 172 | 
  | 
  | 
        potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); | 
| 173 | 
  | 
  | 
      }; break; | 
| 174 | 
  | 
  | 
       | 
| 175 | 
  | 
  | 
      case 2:{ | 
| 176 | 
  | 
  | 
        //we are using the AMBER force field | 
| 177 | 
  | 
  | 
        atomRpar = rbMol->getAtomRpar(i); | 
| 178 | 
  | 
  | 
        atomEps = rbMol->getAtomEps(i); | 
| 179 | 
  | 
  | 
         | 
| 180 | 
  | 
  | 
        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); | 
| 181 | 
  | 
  | 
        rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 182 | 
  | 
  | 
        potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); | 
| 183 | 
  | 
  | 
      }; break; | 
| 184 | 
  | 
  | 
       | 
| 185 | 
  | 
  | 
      case 3:{ | 
| 186 | 
  | 
  | 
        //we are using Allen-Tildesley LJ parameters | 
| 187 | 
  | 
  | 
        atomRpar = rbMol->getAtomRpar(i); | 
| 188 | 
  | 
  | 
        atomEps = rbMol->getAtomEps(i); | 
| 189 | 
  | 
  | 
         | 
| 190 | 
  | 
  | 
        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared); | 
| 191 | 
  | 
  | 
        rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 192 | 
  | 
  | 
        potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); | 
| 193 | 
  | 
  | 
         | 
| 194 | 
  | 
  | 
      }; break; | 
| 195 | 
  | 
  | 
       | 
| 196 | 
  | 
  | 
      case 4:{ | 
| 197 | 
  | 
  | 
        //we are using the OPLS force field | 
| 198 | 
  | 
  | 
        atomRpar = rbMol->getAtomRpar(i); | 
| 199 | 
  | 
  | 
        atomEps = rbMol->getAtomEps(i); | 
| 200 | 
  | 
  | 
         | 
| 201 | 
  | 
  | 
        rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared); | 
| 202 | 
  | 
  | 
        rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 203 | 
  | 
  | 
        potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); | 
| 204 | 
  | 
  | 
      }; break; | 
| 205 | 
  | 
  | 
       | 
| 206 | 
  | 
  | 
      case 5:{ | 
| 207 | 
  | 
  | 
        //we are using the GAFF force field | 
| 208 | 
  | 
  | 
        atomRpar = rbMol->getAtomRpar(i); | 
| 209 | 
  | 
  | 
        atomEps = rbMol->getAtomEps(i); | 
| 210 | 
  | 
  | 
         | 
| 211 | 
  | 
  | 
        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); | 
| 212 | 
  | 
  | 
        rValPowerSix = rValSquared * rValSquared * rValSquared; | 
| 213 | 
  | 
  | 
        potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); | 
| 214 | 
  | 
  | 
      }; break; | 
| 215 | 
  | 
  | 
    }     | 
| 216 | 
  | 
  | 
  } | 
| 217 | 
  | 
  | 
}  | 
| 218 | 
chrisfen | 
1277 | 
 | 
| 219 | 
chrisfen | 
1282 | 
void GridBuilder::rotBody(double pValue, double tValue){ | 
| 220 | 
chrisfen | 
1280 | 
  //zero out the euler angles | 
| 221 | 
chrisfen | 
1281 | 
  for (l=0; l<3; l++) | 
| 222 | 
chrisfen | 
1280 | 
    angles[i] = 0.0; | 
| 223 | 
chrisfen | 
1277 | 
         | 
| 224 | 
chrisfen | 
1282 | 
  //the phi euler angle is for rotation about the z-axis (we use the zxz convention) | 
| 225 | 
  | 
  | 
  angles[0] = pValue; | 
| 226 | 
chrisfen | 
1280 | 
  //the second euler angle is for rotation about the x-axis (we use the zxz convention) | 
| 227 | 
chrisfen | 
1282 | 
  angles[1] = tValue; | 
| 228 | 
chrisfen | 
1277 | 
         | 
| 229 | 
chrisfen | 
1280 | 
  //obtain the rotation matrix through the rigid body class | 
| 230 | 
  | 
  | 
  rbMol->doEulerToRotMat(angles, rotX); | 
| 231 | 
chrisfen | 
1282 | 
   | 
| 232 | 
  | 
  | 
  //start from the reference position | 
| 233 | 
  | 
  | 
  identityMat3(rbMatrix); | 
| 234 | 
  | 
  | 
  rbMol->setA(rbMatrix); | 
| 235 | 
  | 
  | 
   | 
| 236 | 
chrisfen | 
1280 | 
  //rotate the rigid body | 
| 237 | 
  | 
  | 
  matMul3(rotX, rbMatrix, rotatedMat); | 
| 238 | 
  | 
  | 
  rbMol->setA(rotatedMat);       | 
| 239 | 
chrisfen | 
1277 | 
} | 
| 240 | 
  | 
  | 
 | 
| 241 | 
chrisfen | 
1281 | 
void GridBuilder::printGridFiles(){ | 
| 242 | 
  | 
  | 
  ofstream sigmaOut("sigma.grid"); | 
| 243 | 
  | 
  | 
  ofstream sOut("s.grid"); | 
| 244 | 
  | 
  | 
  ofstream epsOut("eps.grid"); | 
| 245 | 
  | 
  | 
   | 
| 246 | 
  | 
  | 
  for (k=0; k<sigList.size(); k++){ | 
| 247 | 
  | 
  | 
    sigmaOut << sigList[k] << "\n0\n"; | 
| 248 | 
  | 
  | 
    sOut << sList[k] << "\n0\n";     | 
| 249 | 
  | 
  | 
    epsOut << epsList[k] << "\n0\n"; | 
| 250 | 
  | 
  | 
  } | 
| 251 | 
  | 
  | 
} |