| 1 | chrisfen | 1277 | #include "GridBuilder.hpp" | 
| 2 |  |  | #include "MatVec3.h" | 
| 3 |  |  | #define PI 3.14159265359 | 
| 4 |  |  |  | 
| 5 |  |  |  | 
| 6 |  |  | GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { | 
| 7 |  |  | rbMol = rb; | 
| 8 |  |  | bandwidth = bandWidth; | 
| 9 |  |  | thetaStep = PI / bandwidth; | 
| 10 |  |  | thetaMin = thetaStep / 2.0; | 
| 11 |  |  | phiStep = thetaStep * 2.0; | 
| 12 |  |  |  | 
| 13 |  |  | //zero out the rot mats | 
| 14 |  |  | for (i=0; i<3; i++) { | 
| 15 |  |  | for (j=0; j<3; j++) { | 
| 16 |  |  | rotX[i][j] = 0.0; | 
| 17 |  |  | rotZ[i][j] = 0.0; | 
| 18 |  |  | rbMatrix[i][j] = 0.0; | 
| 19 |  |  | } | 
| 20 |  |  | } | 
| 21 |  |  | } | 
| 22 |  |  |  | 
| 23 |  |  | GridBuilder::~GridBuilder() { | 
| 24 |  |  | } | 
| 25 |  |  |  | 
| 26 |  |  | void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, | 
| 27 |  |  | vector<double> epsGrid){ | 
| 28 |  |  | double startDist; | 
| 29 |  |  | double minDist = 10.0; //minimum start distance | 
| 30 |  |  |  | 
| 31 |  |  | //first determine the start distance - we always start at least minDist away | 
| 32 |  |  | startDist = rbMol->findMaxExtent() + minDist; | 
| 33 |  |  | if (startDist < minDist) | 
| 34 |  |  | startDist = minDist; | 
| 35 |  |  |  | 
| 36 |  |  | initBody(); | 
| 37 |  |  | for (i=0; i<bandwidth; i++){ | 
| 38 |  |  | for (j=0; j<bandwidth; j++){ | 
| 39 |  |  | releaseProbe(startDist); | 
| 40 |  |  | stepPhi(phiStep); | 
| 41 |  |  | } | 
| 42 |  |  | stepTheta(thetaStep); | 
| 43 |  |  | } | 
| 44 |  |  |  | 
| 45 |  |  | } | 
| 46 |  |  |  | 
| 47 |  |  | void GridBuilder::initBody(){ | 
| 48 |  |  | //set up the rigid body in the starting configuration | 
| 49 |  |  | stepTheta(thetaMin); | 
| 50 |  |  | } | 
| 51 |  |  |  | 
| 52 |  |  | void GridBuilder::releaseProbe(double farPos){ | 
| 53 |  |  | int tooClose; | 
| 54 |  |  | double tempPotEnergy; | 
| 55 |  |  | double interpRange; | 
| 56 |  |  | double interpFrac; | 
| 57 |  |  |  | 
| 58 |  |  | probeCoor = farPos; | 
| 59 |  |  | tooClose = 0; | 
| 60 |  |  | epsVal = 0; | 
| 61 |  |  | rhoStep = 0.1; //the distance the probe atom moves between steps | 
| 62 |  |  |  | 
| 63 |  |  | while (!tooClose){ | 
| 64 |  |  | calcEnergy(); | 
| 65 |  |  | potProgress.push_back(potEnergy); | 
| 66 |  |  | distProgress.push_back(probeCoor); | 
| 67 |  |  |  | 
| 68 |  |  | //if we've reached a new minimum, save the value and position | 
| 69 |  |  | if (potEnergy < epsVal){ | 
| 70 |  |  | epsVal = potEnergy; | 
| 71 |  |  | sDist = probeCoor; | 
| 72 |  |  | } | 
| 73 |  |  |  | 
| 74 |  |  | //test if the probe reached the origin - if so, stop stepping closer | 
| 75 |  |  | if (probeCoor < 0){ | 
| 76 |  |  | sigDist = 0.0; | 
| 77 |  |  | tooClose = 1; | 
| 78 |  |  | } | 
| 79 |  |  |  | 
| 80 |  |  | //test if the probe beyond the contact point - if not, take a step closer | 
| 81 |  |  | if (potEnergy < 0){ | 
| 82 |  |  | sigDist = probeCoor; | 
| 83 |  |  | tempPotEnergy = potEnergy; | 
| 84 |  |  | probeCoor -= rhoStep; | 
| 85 |  |  | } | 
| 86 |  |  | else { | 
| 87 |  |  | //do a linear interpolation to obtain the sigDist | 
| 88 |  |  | interpRange = potEnergy - tempPotEnergy; | 
| 89 |  |  | interpFrac = potEnergy / interpRange; | 
| 90 |  |  | interpFrac = interpFrac * rhoStep; | 
| 91 |  |  | sigDist = probeCoor + interpFrac; | 
| 92 |  |  |  | 
| 93 |  |  | //end the loop | 
| 94 |  |  | tooClose = 1; | 
| 95 |  |  | } | 
| 96 |  |  | } | 
| 97 |  |  | } | 
| 98 |  |  |  | 
| 99 |  |  | void GridBuilder::calcEnergy(){ | 
| 100 |  |  |  | 
| 101 |  |  | } | 
| 102 |  |  |  | 
| 103 |  |  | void GridBuilder::stepTheta(double increment){ | 
| 104 |  |  | //zero out the euler angles | 
| 105 |  |  | for (i=0; i<3; i++) | 
| 106 |  |  | angles[i] = 0.0; | 
| 107 |  |  |  | 
| 108 |  |  | //the second euler angle is for rotation about the x-axis (we use the zxz convention) | 
| 109 |  |  | angles[1] = increment; | 
| 110 |  |  |  | 
| 111 |  |  | //obtain the rotation matrix through the rigid body class | 
| 112 |  |  | rbMol->doEulerToRotMat(angles, rotX); | 
| 113 |  |  |  | 
| 114 |  |  | //rotate the rigid body | 
| 115 |  |  | rbMol->getA(rbMatrix); | 
| 116 |  |  | matMul3(rotX, rbMatrix, rotatedMat); | 
| 117 |  |  | rbMol->setA(rotatedMat); | 
| 118 |  |  |  | 
| 119 |  |  | } | 
| 120 |  |  |  | 
| 121 |  |  | void GridBuilder::stepPhi(double increment){ | 
| 122 |  |  | //zero out the euler angles | 
| 123 |  |  | for (i=0; i<3; i++) | 
| 124 |  |  | angles[i] = 0.0; | 
| 125 |  |  |  | 
| 126 |  |  | //the phi euler angle is for rotation about the z-axis (we use the zxz convention) | 
| 127 |  |  | angles[0] = increment; | 
| 128 |  |  |  | 
| 129 |  |  | //obtain the rotation matrix through the rigid body class | 
| 130 |  |  | rbMol->doEulerToRotMat(angles, rotZ); | 
| 131 |  |  |  | 
| 132 |  |  | //rotate the rigid body | 
| 133 |  |  | rbMol->getA(rbMatrix); | 
| 134 |  |  | matMul3(rotZ, rbMatrix, rotatedMat); | 
| 135 |  |  | rbMol->setA(rotatedMat); | 
| 136 |  |  |  | 
| 137 |  |  | } |