| 1 |
chrisfen |
1287 |
/*************************************************************************** |
| 2 |
|
|
************************************************************************** |
| 3 |
|
|
|
| 4 |
|
|
S2kit 1.0 |
| 5 |
|
|
|
| 6 |
|
|
A lite version of Spherical Harmonic Transform Kit |
| 7 |
|
|
|
| 8 |
|
|
Peter Kostelec, Dan Rockmore |
| 9 |
|
|
{geelong,rockmore}@cs.dartmouth.edu |
| 10 |
|
|
|
| 11 |
|
|
Contact: Peter Kostelec |
| 12 |
|
|
geelong@cs.dartmouth.edu |
| 13 |
|
|
|
| 14 |
|
|
Copyright 2004 Peter Kostelec, Dan Rockmore |
| 15 |
|
|
|
| 16 |
|
|
This file is part of S2kit. |
| 17 |
|
|
|
| 18 |
|
|
S2kit is free software; you can redistribute it and/or modify |
| 19 |
|
|
it under the terms of the GNU General Public License as published by |
| 20 |
|
|
the Free Software Foundation; either version 2 of the License, or |
| 21 |
|
|
(at your option) any later version. |
| 22 |
|
|
|
| 23 |
|
|
S2kit is distributed in the hope that it will be useful, |
| 24 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 25 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 26 |
|
|
GNU General Public License for more details. |
| 27 |
|
|
|
| 28 |
|
|
You should have received a copy of the GNU General Public License |
| 29 |
|
|
along with S2kit; if not, write to the Free Software |
| 30 |
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 31 |
|
|
|
| 32 |
|
|
See the accompanying LICENSE file for details. |
| 33 |
|
|
|
| 34 |
|
|
************************************************************************ |
| 35 |
|
|
************************************************************************/ |
| 36 |
|
|
|
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
/******************************************************************** |
| 40 |
|
|
|
| 41 |
|
|
FST_semi_memo.c - routines to perform convolutions on the |
| 42 |
|
|
2-sphere using a combination of semi-naive and naive algorithms. |
| 43 |
|
|
|
| 44 |
|
|
ASSUMES THAT ALL PRECOMPUTED-DATA IS IN MEMORY, AND NOT TO BE |
| 45 |
|
|
READ FROM THE DISK. |
| 46 |
|
|
|
| 47 |
|
|
The primary functions in this package are |
| 48 |
|
|
|
| 49 |
|
|
1) FST_semi_memo() - computes the spherical harmonic expansion. |
| 50 |
|
|
2) InvFST_semi_memo() - computes the inverse spherical harmonic transform. |
| 51 |
|
|
3) FZT_semi_memo() - computes the zonal harmonic transform. |
| 52 |
|
|
4) TransMult() - Multiplies harmonic coefficients using Driscoll-Healy |
| 53 |
|
|
result. Dual of convolution in "time" domain. |
| 54 |
|
|
5) Conv2Sphere_semi_memo() - Convolves two functins defined on the 2-sphere, |
| 55 |
|
|
using seminaive transform |
| 56 |
|
|
|
| 57 |
|
|
and one utility function: |
| 58 |
|
|
|
| 59 |
|
|
1) seanindex(): Given bandwidth bw, seanindex(m,l,bw) will give the |
| 60 |
|
|
position of the coefficient f-hat(m,l) in the one-row array |
| 61 |
|
|
|
| 62 |
|
|
For descriptions on calling these functions, see the documentation |
| 63 |
|
|
preceding each function. |
| 64 |
|
|
|
| 65 |
|
|
*/ |
| 66 |
|
|
|
| 67 |
|
|
#include <math.h> |
| 68 |
|
|
#include <stdio.h> |
| 69 |
|
|
#include <stdlib.h> |
| 70 |
|
|
#include <string.h> |
| 71 |
|
|
|
| 72 |
|
|
#include "fftw3.h" |
| 73 |
|
|
|
| 74 |
|
|
#include "makeweights.h" |
| 75 |
|
|
#include "cospmls.h" |
| 76 |
|
|
#include "primitive.h" |
| 77 |
|
|
#include "naive_synthesis.h" |
| 78 |
|
|
#include "seminaive.h" |
| 79 |
|
|
#include "FST_semi_memo.h" |
| 80 |
|
|
|
| 81 |
|
|
|
| 82 |
|
|
|
| 83 |
|
|
/************************************************************************/ |
| 84 |
|
|
|
| 85 |
|
|
|
| 86 |
|
|
/***************************************************************** |
| 87 |
|
|
|
| 88 |
|
|
Given bandwidth bw, seanindex(m,l,bw) will give the position of the |
| 89 |
|
|
coefficient f-hat(m,l) in the one-row array that Sean stores the spherical |
| 90 |
|
|
coefficients. This is needed to help preserve the symmetry that the |
| 91 |
|
|
coefficients have: (l = degree, m = order, and abs(m) <= l) |
| 92 |
|
|
|
| 93 |
|
|
f-hat(l,-m) = (-1)^m * conjugate( f-hat(l,m) ) |
| 94 |
|
|
|
| 95 |
|
|
Thanks for your help Mark! |
| 96 |
|
|
|
| 97 |
|
|
******************************************************************/ |
| 98 |
|
|
|
| 99 |
|
|
|
| 100 |
|
|
int seanindex(int m, |
| 101 |
|
|
int l, |
| 102 |
|
|
int bw) |
| 103 |
|
|
{ |
| 104 |
|
|
int bigL; |
| 105 |
|
|
|
| 106 |
|
|
bigL = bw - 1; |
| 107 |
|
|
|
| 108 |
|
|
if( m >= 0 ) |
| 109 |
|
|
return( m * ( bigL + 1 ) - ( ( m * (m - 1) ) /2 ) + ( l - m ) ); |
| 110 |
|
|
else |
| 111 |
|
|
return( ( ( bigL * ( bigL + 3 ) ) /2 ) + 1 + |
| 112 |
|
|
( ( bigL + m ) * ( bigL + m + 1 ) / 2 ) + ( l - abs( m ) ) ); |
| 113 |
|
|
} |
| 114 |
|
|
|
| 115 |
|
|
|
| 116 |
|
|
/************************************************************************/ |
| 117 |
|
|
/* performs a spherical harmonic transform using the semi-naive |
| 118 |
|
|
and naive algorithms |
| 119 |
|
|
|
| 120 |
|
|
bw -> bandwidth of problem |
| 121 |
|
|
size -> size = 2*bw -> dimension of input array (recall that |
| 122 |
|
|
sampling is done at twice the bandwidth) |
| 123 |
|
|
|
| 124 |
|
|
The inputs rdata and idata are expected to be pointers to |
| 125 |
|
|
size x size arrays. The array rdata contains the real parts |
| 126 |
|
|
of the function samples, and idata contains the imaginary |
| 127 |
|
|
parts. |
| 128 |
|
|
|
| 129 |
|
|
rcoeffs and icoeffs are expected to be pointers to bw x bw arrays, |
| 130 |
|
|
and will contain the harmonic coefficients in a "linearized" form. |
| 131 |
|
|
The array rcoeffs contains the real parts of the coefficients, |
| 132 |
|
|
and icoeffs contains the imaginary parts. |
| 133 |
|
|
|
| 134 |
|
|
spharmonic_pml_table should be a (double **) pointer to |
| 135 |
|
|
the result of a call to Spharmonic_Pml_Table. Because this |
| 136 |
|
|
table is re-used in the inverse transform, and because for |
| 137 |
|
|
timing purposes the computation of the table is not included, |
| 138 |
|
|
it is passed in as an argument. Also, at some point this |
| 139 |
|
|
code may be used as par of a series of convolutions, so |
| 140 |
|
|
reducing repetitive computation is prioritized. |
| 141 |
|
|
|
| 142 |
|
|
spharmonic_pml_table will be an array of (double *) pointers |
| 143 |
|
|
the array being of length TableSize(m,bw) |
| 144 |
|
|
|
| 145 |
|
|
workspace needs to be a double pointer to an array of size |
| 146 |
|
|
(8 * bw^2) + (7 * bw). |
| 147 |
|
|
|
| 148 |
|
|
cutoff -> what order to switch from semi-naive to naive |
| 149 |
|
|
algorithm. |
| 150 |
|
|
|
| 151 |
|
|
dataformat =0 -> samples are complex, =1 -> samples real |
| 152 |
|
|
|
| 153 |
|
|
|
| 154 |
|
|
Output Ordering of coeffs f(m,l) is |
| 155 |
|
|
f(0,0) f(0,1) f(0,2) ... f(0,bw-1) |
| 156 |
|
|
f(1,1) f(1,2) ... f(1,bw-1) |
| 157 |
|
|
etc. |
| 158 |
|
|
f(bw-2,bw-2), f(bw-2,bw-1) |
| 159 |
|
|
f(bw-1,bw-1) |
| 160 |
|
|
f(-(bw-1),bw-1) |
| 161 |
|
|
f(-(bw-2),bw-2) f(-(bw-2),bw-1) |
| 162 |
|
|
etc. |
| 163 |
|
|
f(-2,2) ... f(-2,bw-1) |
| 164 |
|
|
f(-1,1) f(-1,2) ... f(-1,bw-1) |
| 165 |
|
|
|
| 166 |
|
|
|
| 167 |
|
|
This only requires an array of size (bw*bw). If zero-padding |
| 168 |
|
|
is used to make the indexing nice, then you need a an |
| 169 |
|
|
(2bw-1) * bw array - but that is not done here. |
| 170 |
|
|
Because of the amount of space necessary for doing |
| 171 |
|
|
large transforms, it is important not to use any |
| 172 |
|
|
more than necessary. |
| 173 |
|
|
|
| 174 |
|
|
*/ |
| 175 |
|
|
|
| 176 |
|
|
void FST_semi_memo(double *rdata, double *idata, |
| 177 |
|
|
double *rcoeffs, double *icoeffs, |
| 178 |
|
|
int bw, |
| 179 |
|
|
double **seminaive_naive_table, |
| 180 |
|
|
double *workspace, |
| 181 |
|
|
int dataformat, |
| 182 |
|
|
int cutoff, |
| 183 |
|
|
fftw_plan *dctPlan, |
| 184 |
|
|
fftw_plan *fftPlan, |
| 185 |
|
|
double *weights ) |
| 186 |
|
|
{ |
| 187 |
|
|
int size, m, i, j; |
| 188 |
|
|
int dummy0, dummy1 ; |
| 189 |
|
|
double *rres, *ires; |
| 190 |
|
|
double *rdataptr, *idataptr; |
| 191 |
|
|
double *fltres, *scratchpad; |
| 192 |
|
|
double *eval_pts; |
| 193 |
|
|
double pow_one; |
| 194 |
|
|
double tmpA, tmpSize ; |
| 195 |
|
|
|
| 196 |
|
|
size = 2*bw ; |
| 197 |
|
|
tmpSize = 1./ ((double ) size); |
| 198 |
|
|
tmpA = sqrt( 2. * M_PI ) ; |
| 199 |
|
|
|
| 200 |
|
|
rres = workspace; /* needs (size * size) = (4 * bw^2) */ |
| 201 |
|
|
ires = rres + (size * size); /* needs (size * size) = (4 * bw^2) */ |
| 202 |
|
|
fltres = ires + (size * size) ; /* needs bw */ |
| 203 |
|
|
eval_pts = fltres + bw; /* needs (2*bw) */ |
| 204 |
|
|
scratchpad = eval_pts + (2*bw); /* needs (4 * bw) */ |
| 205 |
|
|
|
| 206 |
|
|
/* total workspace is (8 * bw^2) + (7 * bw) */ |
| 207 |
|
|
|
| 208 |
|
|
/* do the FFTs along phi */ |
| 209 |
|
|
fftw_execute_split_dft( *fftPlan, |
| 210 |
|
|
rdata, idata, |
| 211 |
|
|
rres, ires ) ; |
| 212 |
|
|
/* |
| 213 |
|
|
normalize |
| 214 |
|
|
|
| 215 |
|
|
note that I'm getting the sqrt(2pi) in there at |
| 216 |
|
|
this point ... to account for the fact that the spherical |
| 217 |
|
|
harmonics are of norm 1: I need to account for |
| 218 |
|
|
the fact that the associated Legendres are |
| 219 |
|
|
of norm 1 |
| 220 |
|
|
*/ |
| 221 |
|
|
tmpSize *= tmpA ; |
| 222 |
|
|
for( j = 0 ; j < size*size ; j ++ ) |
| 223 |
|
|
{ |
| 224 |
|
|
rres[j] *= tmpSize ; |
| 225 |
|
|
ires[j] *= tmpSize ; |
| 226 |
|
|
} |
| 227 |
|
|
|
| 228 |
|
|
/* point to start of output data buffers */ |
| 229 |
|
|
rdataptr = rcoeffs; |
| 230 |
|
|
idataptr = icoeffs; |
| 231 |
|
|
|
| 232 |
|
|
for (m=0; m<bw; m++) { |
| 233 |
|
|
/* |
| 234 |
|
|
fprintf(stderr,"m = %d\n",m); |
| 235 |
|
|
*/ |
| 236 |
|
|
|
| 237 |
|
|
/*** test to see if before cutoff or after ***/ |
| 238 |
|
|
if (m < cutoff){ |
| 239 |
|
|
|
| 240 |
|
|
/* do the real part */ |
| 241 |
|
|
SemiNaiveReduced(rres+(m*size), |
| 242 |
|
|
bw, |
| 243 |
|
|
m, |
| 244 |
|
|
fltres, |
| 245 |
|
|
scratchpad, |
| 246 |
|
|
seminaive_naive_table[m], |
| 247 |
|
|
weights, |
| 248 |
|
|
dctPlan); |
| 249 |
|
|
|
| 250 |
|
|
/* now load real part of coefficients into output space */ |
| 251 |
|
|
memcpy(rdataptr, fltres, sizeof(double) * (bw - m)); |
| 252 |
|
|
|
| 253 |
|
|
rdataptr += bw-m; |
| 254 |
|
|
|
| 255 |
|
|
/* do imaginary part */ |
| 256 |
|
|
SemiNaiveReduced(ires+(m*size), |
| 257 |
|
|
bw, |
| 258 |
|
|
m, |
| 259 |
|
|
fltres, |
| 260 |
|
|
scratchpad, |
| 261 |
|
|
seminaive_naive_table[m], |
| 262 |
|
|
weights, |
| 263 |
|
|
dctPlan); |
| 264 |
|
|
|
| 265 |
|
|
/* now load imaginary part of coefficients into output space */ |
| 266 |
|
|
memcpy(idataptr, fltres, sizeof(double) * (bw - m)); |
| 267 |
|
|
|
| 268 |
|
|
idataptr += bw-m; |
| 269 |
|
|
|
| 270 |
|
|
} |
| 271 |
|
|
else{ |
| 272 |
|
|
/* do real part */ |
| 273 |
|
|
Naive_AnalysisX(rres+(m*size), |
| 274 |
|
|
bw, |
| 275 |
|
|
m, |
| 276 |
|
|
weights, |
| 277 |
|
|
fltres, |
| 278 |
|
|
seminaive_naive_table[m], |
| 279 |
|
|
scratchpad ); |
| 280 |
|
|
memcpy(rdataptr, fltres, sizeof(double) * (bw - m)); |
| 281 |
|
|
rdataptr += bw-m; |
| 282 |
|
|
|
| 283 |
|
|
/* do imaginary part */ |
| 284 |
|
|
Naive_AnalysisX(ires+(m*size), |
| 285 |
|
|
bw, |
| 286 |
|
|
m, |
| 287 |
|
|
weights, |
| 288 |
|
|
fltres, |
| 289 |
|
|
seminaive_naive_table[m], |
| 290 |
|
|
scratchpad ); |
| 291 |
|
|
memcpy(idataptr, fltres, sizeof(double) * (bw - m)); |
| 292 |
|
|
idataptr += bw-m; |
| 293 |
|
|
} |
| 294 |
|
|
} |
| 295 |
|
|
|
| 296 |
|
|
/*** now do upper coefficients ****/ |
| 297 |
|
|
|
| 298 |
|
|
/* now if the data is real, we don't have to compute the |
| 299 |
|
|
coefficients whose order is less than 0, i.e. since |
| 300 |
|
|
the data is real, we know that |
| 301 |
|
|
f-hat(l,-m) = (-1)^m * conjugate(f-hat(l,m)), |
| 302 |
|
|
so use that to get the rest of the coefficients |
| 303 |
|
|
|
| 304 |
|
|
dataformat =0 -> samples are complex, =1 -> samples real |
| 305 |
|
|
|
| 306 |
|
|
*/ |
| 307 |
|
|
|
| 308 |
|
|
if( dataformat == 0 ){ |
| 309 |
|
|
|
| 310 |
|
|
/* note that m is greater than bw here, but this is for |
| 311 |
|
|
purposes of indexing the input data arrays. |
| 312 |
|
|
The "true" value of m as a parameter for Pml is |
| 313 |
|
|
size - m */ |
| 314 |
|
|
|
| 315 |
|
|
for (m=bw+1; m<size; m++) { |
| 316 |
|
|
/* |
| 317 |
|
|
fprintf(stderr,"m = %d\n",-(size-m)); |
| 318 |
|
|
*/ |
| 319 |
|
|
|
| 320 |
|
|
if ( (size-m) < cutoff ) |
| 321 |
|
|
{ |
| 322 |
|
|
/* do real part */ |
| 323 |
|
|
SemiNaiveReduced(rres+(m*size), |
| 324 |
|
|
bw, |
| 325 |
|
|
size-m, |
| 326 |
|
|
fltres, |
| 327 |
|
|
scratchpad, |
| 328 |
|
|
seminaive_naive_table[size-m], |
| 329 |
|
|
weights, |
| 330 |
|
|
dctPlan ); |
| 331 |
|
|
|
| 332 |
|
|
/* now load real part of coefficients into output space */ |
| 333 |
|
|
if ((m % 2) != 0) { |
| 334 |
|
|
for (i=0; i<m-bw; i++) |
| 335 |
|
|
rdataptr[i] = -fltres[i]; |
| 336 |
|
|
} |
| 337 |
|
|
else { |
| 338 |
|
|
memcpy(rdataptr, fltres, sizeof(double) * (m - bw)); |
| 339 |
|
|
} |
| 340 |
|
|
rdataptr += m-bw; |
| 341 |
|
|
|
| 342 |
|
|
/* do imaginary part */ |
| 343 |
|
|
SemiNaiveReduced(ires+(m*size), |
| 344 |
|
|
bw, |
| 345 |
|
|
size-m, |
| 346 |
|
|
fltres, |
| 347 |
|
|
scratchpad, |
| 348 |
|
|
seminaive_naive_table[size-m], |
| 349 |
|
|
weights, |
| 350 |
|
|
dctPlan); |
| 351 |
|
|
|
| 352 |
|
|
/* now load imag part of coefficients into output space */ |
| 353 |
|
|
if ((m % 2) != 0) { |
| 354 |
|
|
for (i=0; i<m-bw; i++) |
| 355 |
|
|
idataptr[i] = -fltres[i]; |
| 356 |
|
|
} |
| 357 |
|
|
else { |
| 358 |
|
|
memcpy(idataptr, fltres, sizeof(double) * (m - bw)); |
| 359 |
|
|
} |
| 360 |
|
|
idataptr += m-bw; |
| 361 |
|
|
} |
| 362 |
|
|
else |
| 363 |
|
|
{ |
| 364 |
|
|
Naive_AnalysisX(rres+(m*size), |
| 365 |
|
|
bw, |
| 366 |
|
|
size-m, |
| 367 |
|
|
weights, |
| 368 |
|
|
fltres, |
| 369 |
|
|
seminaive_naive_table[size-m], |
| 370 |
|
|
scratchpad); |
| 371 |
|
|
|
| 372 |
|
|
/* now load real part of coefficients into output space */ |
| 373 |
|
|
if ((m % 2) != 0) { |
| 374 |
|
|
for (i=0; i<m-bw; i++) |
| 375 |
|
|
rdataptr[i] = -fltres[i]; |
| 376 |
|
|
} |
| 377 |
|
|
else { |
| 378 |
|
|
memcpy(rdataptr, fltres, sizeof(double) * (m - bw)); |
| 379 |
|
|
} |
| 380 |
|
|
rdataptr += m-bw; |
| 381 |
|
|
|
| 382 |
|
|
/* do imaginary part */ |
| 383 |
|
|
Naive_AnalysisX(ires+(m*size), |
| 384 |
|
|
bw, |
| 385 |
|
|
size-m, |
| 386 |
|
|
weights, |
| 387 |
|
|
fltres, |
| 388 |
|
|
seminaive_naive_table[size-m], |
| 389 |
|
|
scratchpad); |
| 390 |
|
|
|
| 391 |
|
|
/* now load imag part of coefficients into output space */ |
| 392 |
|
|
if ((m % 2) != 0) { |
| 393 |
|
|
for (i=0; i<m-bw; i++) |
| 394 |
|
|
idataptr[i] = -fltres[i]; |
| 395 |
|
|
} |
| 396 |
|
|
else { |
| 397 |
|
|
memcpy(idataptr, fltres, sizeof(double) * (m - bw)); |
| 398 |
|
|
} |
| 399 |
|
|
idataptr += m-bw; |
| 400 |
|
|
|
| 401 |
|
|
} |
| 402 |
|
|
|
| 403 |
|
|
} |
| 404 |
|
|
} |
| 405 |
|
|
else /**** if the data is real ****/ |
| 406 |
|
|
{ |
| 407 |
|
|
pow_one = 1.0; |
| 408 |
|
|
for(i = 1; i < bw; i++){ |
| 409 |
|
|
pow_one *= -1.0; |
| 410 |
|
|
for( j = i; j < bw; j++){ |
| 411 |
|
|
/* |
| 412 |
|
|
SEANINDEXP(dummy0,i,j,bw); |
| 413 |
|
|
SEANINDEXN(dummy1,-i,j,bw); |
| 414 |
|
|
*/ |
| 415 |
|
|
|
| 416 |
|
|
dummy0 = seanindex(i, j, bw); |
| 417 |
|
|
dummy1 = seanindex(-i, j, bw); |
| 418 |
|
|
|
| 419 |
|
|
rcoeffs[dummy1] = |
| 420 |
|
|
pow_one * rcoeffs[dummy0]; |
| 421 |
|
|
icoeffs[dummy1] = |
| 422 |
|
|
-pow_one * icoeffs[dummy0]; |
| 423 |
|
|
} |
| 424 |
|
|
} |
| 425 |
|
|
} |
| 426 |
|
|
|
| 427 |
|
|
} |
| 428 |
|
|
|