| 1 |
chrisfen |
1287 |
/*************************************************************************** |
| 2 |
|
|
************************************************************************** |
| 3 |
|
|
|
| 4 |
|
|
S2kit 1.0 |
| 5 |
|
|
|
| 6 |
|
|
A lite version of Spherical Harmonic Transform Kit |
| 7 |
|
|
|
| 8 |
|
|
Peter Kostelec, Dan Rockmore |
| 9 |
|
|
{geelong,rockmore}@cs.dartmouth.edu |
| 10 |
|
|
|
| 11 |
|
|
Contact: Peter Kostelec |
| 12 |
|
|
geelong@cs.dartmouth.edu |
| 13 |
|
|
|
| 14 |
|
|
Copyright 2004 Peter Kostelec, Dan Rockmore |
| 15 |
|
|
|
| 16 |
|
|
This file is part of S2kit. |
| 17 |
|
|
|
| 18 |
|
|
S2kit is free software; you can redistribute it and/or modify |
| 19 |
|
|
it under the terms of the GNU General Public License as published by |
| 20 |
|
|
the Free Software Foundation; either version 2 of the License, or |
| 21 |
|
|
(at your option) any later version. |
| 22 |
|
|
|
| 23 |
|
|
S2kit is distributed in the hope that it will be useful, |
| 24 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 25 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 26 |
|
|
GNU General Public License for more details. |
| 27 |
|
|
|
| 28 |
|
|
You should have received a copy of the GNU General Public License |
| 29 |
|
|
along with S2kit; if not, write to the Free Software |
| 30 |
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 31 |
|
|
|
| 32 |
|
|
See the accompanying LICENSE file for details. |
| 33 |
|
|
|
| 34 |
|
|
************************************************************************ |
| 35 |
|
|
************************************************************************/ |
| 36 |
|
|
|
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
/******************************************************************** |
| 40 |
|
|
|
| 41 |
|
|
FST_semi_memo.c - routines to perform convolutions on the |
| 42 |
|
|
2-sphere using a combination of semi-naive and naive algorithms. |
| 43 |
|
|
|
| 44 |
|
|
ASSUMES THAT ALL PRECOMPUTED-DATA IS IN MEMORY, AND NOT TO BE |
| 45 |
|
|
READ FROM THE DISK. |
| 46 |
|
|
|
| 47 |
|
|
The primary functions in this package are |
| 48 |
|
|
|
| 49 |
|
|
1) FST_semi_memo() - computes the spherical harmonic expansion. |
| 50 |
|
|
2) InvFST_semi_memo() - computes the inverse spherical harmonic transform. |
| 51 |
|
|
3) FZT_semi_memo() - computes the zonal harmonic transform. |
| 52 |
|
|
4) TransMult() - Multiplies harmonic coefficients using Driscoll-Healy |
| 53 |
|
|
result. Dual of convolution in "time" domain. |
| 54 |
|
|
5) Conv2Sphere_semi_memo() - Convolves two functins defined on the 2-sphere, |
| 55 |
|
|
using seminaive transform |
| 56 |
|
|
|
| 57 |
|
|
and one utility function: |
| 58 |
|
|
|
| 59 |
|
|
1) seanindex(): Given bandwidth bw, seanindex(m,l,bw) will give the |
| 60 |
|
|
position of the coefficient f-hat(m,l) in the one-row array |
| 61 |
|
|
|
| 62 |
|
|
For descriptions on calling these functions, see the documentation |
| 63 |
|
|
preceding each function. |
| 64 |
|
|
|
| 65 |
|
|
*/ |
| 66 |
|
|
|
| 67 |
|
|
#include <math.h> |
| 68 |
|
|
#include <stdio.h> |
| 69 |
|
|
#include <stdlib.h> |
| 70 |
|
|
#include <string.h> |
| 71 |
|
|
|
| 72 |
|
|
#include "fftw3.h" |
| 73 |
|
|
|
| 74 |
|
|
#include "makeweights.h" |
| 75 |
|
|
#include "cospmls.h" |
| 76 |
|
|
#include "primitive.h" |
| 77 |
|
|
#include "naive_synthesis.h" |
| 78 |
|
|
#include "seminaive.h" |
| 79 |
|
|
#include "FST_semi_memo.h" |
| 80 |
|
|
|
| 81 |
|
|
|
| 82 |
|
|
|
| 83 |
|
|
/************************************************************************/ |
| 84 |
|
|
|
| 85 |
|
|
|
| 86 |
|
|
/***************************************************************** |
| 87 |
|
|
|
| 88 |
|
|
Given bandwidth bw, seanindex(m,l,bw) will give the position of the |
| 89 |
|
|
coefficient f-hat(m,l) in the one-row array that Sean stores the spherical |
| 90 |
|
|
coefficients. This is needed to help preserve the symmetry that the |
| 91 |
|
|
coefficients have: (l = degree, m = order, and abs(m) <= l) |
| 92 |
|
|
|
| 93 |
|
|
f-hat(l,-m) = (-1)^m * conjugate( f-hat(l,m) ) |
| 94 |
|
|
|
| 95 |
|
|
Thanks for your help Mark! |
| 96 |
|
|
|
| 97 |
|
|
******************************************************************/ |
| 98 |
|
|
|
| 99 |
|
|
|
| 100 |
|
|
int seanindex(int m, |
| 101 |
|
|
int l, |
| 102 |
|
|
int bw) |
| 103 |
|
|
{ |
| 104 |
|
|
int bigL; |
| 105 |
|
|
|
| 106 |
|
|
bigL = bw - 1; |
| 107 |
|
|
|
| 108 |
|
|
if( m >= 0 ) |
| 109 |
|
|
return( m * ( bigL + 1 ) - ( ( m * (m - 1) ) /2 ) + ( l - m ) ); |
| 110 |
|
|
else |
| 111 |
|
|
return( ( ( bigL * ( bigL + 3 ) ) /2 ) + 1 + |
| 112 |
|
|
( ( bigL + m ) * ( bigL + m + 1 ) / 2 ) + ( l - abs( m ) ) ); |
| 113 |
|
|
} |
| 114 |
|
|
|
| 115 |
|
|
|
| 116 |
|
|
/************************************************************************/ |
| 117 |
|
|
/* performs a spherical harmonic transform using the semi-naive |
| 118 |
|
|
and naive algorithms |
| 119 |
|
|
|
| 120 |
|
|
bw -> bandwidth of problem |
| 121 |
|
|
size -> size = 2*bw -> dimension of input array (recall that |
| 122 |
|
|
sampling is done at twice the bandwidth) |
| 123 |
|
|
|
| 124 |
|
|
The inputs rdata and idata are expected to be pointers to |
| 125 |
|
|
size x size arrays. The array rdata contains the real parts |
| 126 |
|
|
of the function samples, and idata contains the imaginary |
| 127 |
|
|
parts. |
| 128 |
|
|
|
| 129 |
|
|
rcoeffs and icoeffs are expected to be pointers to bw x bw arrays, |
| 130 |
|
|
and will contain the harmonic coefficients in a "linearized" form. |
| 131 |
|
|
The array rcoeffs contains the real parts of the coefficients, |
| 132 |
|
|
and icoeffs contains the imaginary parts. |
| 133 |
|
|
|
| 134 |
|
|
spharmonic_pml_table should be a (double **) pointer to |
| 135 |
|
|
the result of a call to Spharmonic_Pml_Table. Because this |
| 136 |
|
|
table is re-used in the inverse transform, and because for |
| 137 |
|
|
timing purposes the computation of the table is not included, |
| 138 |
|
|
it is passed in as an argument. Also, at some point this |
| 139 |
|
|
code may be used as par of a series of convolutions, so |
| 140 |
|
|
reducing repetitive computation is prioritized. |
| 141 |
|
|
|
| 142 |
|
|
spharmonic_pml_table will be an array of (double *) pointers |
| 143 |
|
|
the array being of length TableSize(m,bw) |
| 144 |
|
|
|
| 145 |
|
|
workspace needs to be a double pointer to an array of size |
| 146 |
|
|
(8 * bw^2) + (7 * bw). |
| 147 |
|
|
|
| 148 |
|
|
cutoff -> what order to switch from semi-naive to naive |
| 149 |
|
|
algorithm. |
| 150 |
|
|
|
| 151 |
|
|
dataformat =0 -> samples are complex, =1 -> samples real |
| 152 |
|
|
|
| 153 |
|
|
|
| 154 |
|
|
Output Ordering of coeffs f(m,l) is |
| 155 |
|
|
f(0,0) f(0,1) f(0,2) ... f(0,bw-1) |
| 156 |
|
|
f(1,1) f(1,2) ... f(1,bw-1) |
| 157 |
|
|
etc. |
| 158 |
|
|
f(bw-2,bw-2), f(bw-2,bw-1) |
| 159 |
|
|
f(bw-1,bw-1) |
| 160 |
|
|
f(-(bw-1),bw-1) |
| 161 |
|
|
f(-(bw-2),bw-2) f(-(bw-2),bw-1) |
| 162 |
|
|
etc. |
| 163 |
|
|
f(-2,2) ... f(-2,bw-1) |
| 164 |
|
|
f(-1,1) f(-1,2) ... f(-1,bw-1) |
| 165 |
|
|
|
| 166 |
|
|
|
| 167 |
|
|
This only requires an array of size (bw*bw). If zero-padding |
| 168 |
|
|
is used to make the indexing nice, then you need a an |
| 169 |
|
|
(2bw-1) * bw array - but that is not done here. |
| 170 |
|
|
Because of the amount of space necessary for doing |
| 171 |
|
|
large transforms, it is important not to use any |
| 172 |
|
|
more than necessary. |
| 173 |
|
|
|
| 174 |
|
|
*/ |
| 175 |
|
|
|
| 176 |
|
|
void FST_semi_memo(double *rdata, double *idata, |
| 177 |
|
|
double *rcoeffs, double *icoeffs, |
| 178 |
|
|
int bw, |
| 179 |
|
|
double **seminaive_naive_table, |
| 180 |
|
|
double *workspace, |
| 181 |
|
|
int dataformat, |
| 182 |
|
|
int cutoff, |
| 183 |
|
|
fftw_plan *dctPlan, |
| 184 |
|
|
fftw_plan *fftPlan, |
| 185 |
|
|
double *weights ) |
| 186 |
|
|
{ |
| 187 |
|
|
int size, m, i, j; |
| 188 |
|
|
int dummy0, dummy1 ; |
| 189 |
|
|
double *rres, *ires; |
| 190 |
|
|
double *rdataptr, *idataptr; |
| 191 |
|
|
double *fltres, *scratchpad; |
| 192 |
|
|
double *eval_pts; |
| 193 |
|
|
double pow_one; |
| 194 |
|
|
double tmpA, tmpSize ; |
| 195 |
|
|
|
| 196 |
|
|
size = 2*bw ; |
| 197 |
|
|
tmpSize = 1./ ((double ) size); |
| 198 |
|
|
tmpA = sqrt( 2. * M_PI ) ; |
| 199 |
|
|
|
| 200 |
|
|
rres = workspace; /* needs (size * size) = (4 * bw^2) */ |
| 201 |
|
|
ires = rres + (size * size); /* needs (size * size) = (4 * bw^2) */ |
| 202 |
|
|
fltres = ires + (size * size) ; /* needs bw */ |
| 203 |
|
|
eval_pts = fltres + bw; /* needs (2*bw) */ |
| 204 |
|
|
scratchpad = eval_pts + (2*bw); /* needs (4 * bw) */ |
| 205 |
|
|
|
| 206 |
|
|
/* total workspace is (8 * bw^2) + (7 * bw) */ |
| 207 |
|
|
|
| 208 |
|
|
/* do the FFTs along phi */ |
| 209 |
|
|
fftw_execute_split_dft( *fftPlan, |
| 210 |
|
|
rdata, idata, |
| 211 |
|
|
rres, ires ) ; |
| 212 |
|
|
/* |
| 213 |
|
|
normalize |
| 214 |
|
|
|
| 215 |
|
|
note that I'm getting the sqrt(2pi) in there at |
| 216 |
|
|
this point ... to account for the fact that the spherical |
| 217 |
|
|
harmonics are of norm 1: I need to account for |
| 218 |
|
|
the fact that the associated Legendres are |
| 219 |
|
|
of norm 1 |
| 220 |
|
|
*/ |
| 221 |
|
|
tmpSize *= tmpA ; |
| 222 |
|
|
for( j = 0 ; j < size*size ; j ++ ) |
| 223 |
|
|
{ |
| 224 |
|
|
rres[j] *= tmpSize ; |
| 225 |
|
|
ires[j] *= tmpSize ; |
| 226 |
|
|
} |
| 227 |
|
|
|
| 228 |
|
|
/* point to start of output data buffers */ |
| 229 |
|
|
rdataptr = rcoeffs; |
| 230 |
|
|
idataptr = icoeffs; |
| 231 |
|
|
|
| 232 |
|
|
for (m=0; m<bw; m++) { |
| 233 |
|
|
/* |
| 234 |
|
|
fprintf(stderr,"m = %d\n",m); |
| 235 |
|
|
*/ |
| 236 |
|
|
|
| 237 |
|
|
/*** test to see if before cutoff or after ***/ |
| 238 |
|
|
if (m < cutoff){ |
| 239 |
|
|
|
| 240 |
|
|
/* do the real part */ |
| 241 |
|
|
SemiNaiveReduced(rres+(m*size), |
| 242 |
|
|
bw, |
| 243 |
|
|
m, |
| 244 |
|
|
fltres, |
| 245 |
|
|
scratchpad, |
| 246 |
|
|
seminaive_naive_table[m], |
| 247 |
|
|
weights, |
| 248 |
|
|
dctPlan); |
| 249 |
|
|
|
| 250 |
|
|
/* now load real part of coefficients into output space */ |
| 251 |
|
|
memcpy(rdataptr, fltres, sizeof(double) * (bw - m)); |
| 252 |
|
|
|
| 253 |
|
|
rdataptr += bw-m; |
| 254 |
|
|
|
| 255 |
|
|
/* do imaginary part */ |
| 256 |
|
|
SemiNaiveReduced(ires+(m*size), |
| 257 |
|
|
bw, |
| 258 |
|
|
m, |
| 259 |
|
|
fltres, |
| 260 |
|
|
scratchpad, |
| 261 |
|
|
seminaive_naive_table[m], |
| 262 |
|
|
weights, |
| 263 |
|
|
dctPlan); |
| 264 |
|
|
|
| 265 |
|
|
/* now load imaginary part of coefficients into output space */ |
| 266 |
|
|
memcpy(idataptr, fltres, sizeof(double) * (bw - m)); |
| 267 |
|
|
|
| 268 |
|
|
idataptr += bw-m; |
| 269 |
|
|
|
| 270 |
|
|
} |
| 271 |
|
|
else{ |
| 272 |
|
|
/* do real part */ |
| 273 |
|
|
Naive_AnalysisX(rres+(m*size), |
| 274 |
|
|
bw, |
| 275 |
|
|
m, |
| 276 |
|
|
weights, |
| 277 |
|
|
fltres, |
| 278 |
|
|
seminaive_naive_table[m], |
| 279 |
|
|
scratchpad ); |
| 280 |
|
|
memcpy(rdataptr, fltres, sizeof(double) * (bw - m)); |
| 281 |
|
|
rdataptr += bw-m; |
| 282 |
|
|
|
| 283 |
|
|
/* do imaginary part */ |
| 284 |
|
|
Naive_AnalysisX(ires+(m*size), |
| 285 |
|
|
bw, |
| 286 |
|
|
m, |
| 287 |
|
|
weights, |
| 288 |
|
|
fltres, |
| 289 |
|
|
seminaive_naive_table[m], |
| 290 |
|
|
scratchpad ); |
| 291 |
|
|
memcpy(idataptr, fltres, sizeof(double) * (bw - m)); |
| 292 |
|
|
idataptr += bw-m; |
| 293 |
|
|
} |
| 294 |
|
|
} |
| 295 |
|
|
|
| 296 |
|
|
/*** now do upper coefficients ****/ |
| 297 |
|
|
|
| 298 |
|
|
/* now if the data is real, we don't have to compute the |
| 299 |
|
|
coefficients whose order is less than 0, i.e. since |
| 300 |
|
|
the data is real, we know that |
| 301 |
|
|
f-hat(l,-m) = (-1)^m * conjugate(f-hat(l,m)), |
| 302 |
|
|
so use that to get the rest of the coefficients |
| 303 |
|
|
|
| 304 |
|
|
dataformat =0 -> samples are complex, =1 -> samples real |
| 305 |
|
|
|
| 306 |
|
|
*/ |
| 307 |
|
|
|
| 308 |
|
|
if( dataformat == 0 ){ |
| 309 |
|
|
|
| 310 |
|
|
/* note that m is greater than bw here, but this is for |
| 311 |
|
|
purposes of indexing the input data arrays. |
| 312 |
|
|
The "true" value of m as a parameter for Pml is |
| 313 |
|
|
size - m */ |
| 314 |
|
|
|
| 315 |
|
|
for (m=bw+1; m<size; m++) { |
| 316 |
|
|
/* |
| 317 |
|
|
fprintf(stderr,"m = %d\n",-(size-m)); |
| 318 |
|
|
*/ |
| 319 |
|
|
|
| 320 |
|
|
if ( (size-m) < cutoff ) |
| 321 |
|
|
{ |
| 322 |
|
|
/* do real part */ |
| 323 |
|
|
SemiNaiveReduced(rres+(m*size), |
| 324 |
|
|
bw, |
| 325 |
|
|
size-m, |
| 326 |
|
|
fltres, |
| 327 |
|
|
scratchpad, |
| 328 |
|
|
seminaive_naive_table[size-m], |
| 329 |
|
|
weights, |
| 330 |
|
|
dctPlan ); |
| 331 |
|
|
|
| 332 |
|
|
/* now load real part of coefficients into output space */ |
| 333 |
|
|
if ((m % 2) != 0) { |
| 334 |
|
|
for (i=0; i<m-bw; i++) |
| 335 |
|
|
rdataptr[i] = -fltres[i]; |
| 336 |
|
|
} |
| 337 |
|
|
else { |
| 338 |
|
|
memcpy(rdataptr, fltres, sizeof(double) * (m - bw)); |
| 339 |
|
|
} |
| 340 |
|
|
rdataptr += m-bw; |
| 341 |
|
|
|
| 342 |
|
|
/* do imaginary part */ |
| 343 |
|
|
SemiNaiveReduced(ires+(m*size), |
| 344 |
|
|
bw, |
| 345 |
|
|
size-m, |
| 346 |
|
|
fltres, |
| 347 |
|
|
scratchpad, |
| 348 |
|
|
seminaive_naive_table[size-m], |
| 349 |
|
|
weights, |
| 350 |
|
|
dctPlan); |
| 351 |
|
|
|
| 352 |
|
|
/* now load imag part of coefficients into output space */ |
| 353 |
|
|
if ((m % 2) != 0) { |
| 354 |
|
|
for (i=0; i<m-bw; i++) |
| 355 |
|
|
idataptr[i] = -fltres[i]; |
| 356 |
|
|
} |
| 357 |
|
|
else { |
| 358 |
|
|
memcpy(idataptr, fltres, sizeof(double) * (m - bw)); |
| 359 |
|
|
} |
| 360 |
|
|
idataptr += m-bw; |
| 361 |
|
|
} |
| 362 |
|
|
else |
| 363 |
|
|
{ |
| 364 |
|
|
Naive_AnalysisX(rres+(m*size), |
| 365 |
|
|
bw, |
| 366 |
|
|
size-m, |
| 367 |
|
|
weights, |
| 368 |
|
|
fltres, |
| 369 |
|
|
seminaive_naive_table[size-m], |
| 370 |
|
|
scratchpad); |
| 371 |
|
|
|
| 372 |
|
|
/* now load real part of coefficients into output space */ |
| 373 |
|
|
if ((m % 2) != 0) { |
| 374 |
|
|
for (i=0; i<m-bw; i++) |
| 375 |
|
|
rdataptr[i] = -fltres[i]; |
| 376 |
|
|
} |
| 377 |
|
|
else { |
| 378 |
|
|
memcpy(rdataptr, fltres, sizeof(double) * (m - bw)); |
| 379 |
|
|
} |
| 380 |
|
|
rdataptr += m-bw; |
| 381 |
|
|
|
| 382 |
|
|
/* do imaginary part */ |
| 383 |
|
|
Naive_AnalysisX(ires+(m*size), |
| 384 |
|
|
bw, |
| 385 |
|
|
size-m, |
| 386 |
|
|
weights, |
| 387 |
|
|
fltres, |
| 388 |
|
|
seminaive_naive_table[size-m], |
| 389 |
|
|
scratchpad); |
| 390 |
|
|
|
| 391 |
|
|
/* now load imag part of coefficients into output space */ |
| 392 |
|
|
if ((m % 2) != 0) { |
| 393 |
|
|
for (i=0; i<m-bw; i++) |
| 394 |
|
|
idataptr[i] = -fltres[i]; |
| 395 |
|
|
} |
| 396 |
|
|
else { |
| 397 |
|
|
memcpy(idataptr, fltres, sizeof(double) * (m - bw)); |
| 398 |
|
|
} |
| 399 |
|
|
idataptr += m-bw; |
| 400 |
|
|
|
| 401 |
|
|
} |
| 402 |
|
|
|
| 403 |
|
|
} |
| 404 |
|
|
} |
| 405 |
|
|
else /**** if the data is real ****/ |
| 406 |
|
|
{ |
| 407 |
|
|
pow_one = 1.0; |
| 408 |
|
|
for(i = 1; i < bw; i++){ |
| 409 |
|
|
pow_one *= -1.0; |
| 410 |
|
|
for( j = i; j < bw; j++){ |
| 411 |
|
|
/* |
| 412 |
|
|
SEANINDEXP(dummy0,i,j,bw); |
| 413 |
|
|
SEANINDEXN(dummy1,-i,j,bw); |
| 414 |
|
|
*/ |
| 415 |
|
|
|
| 416 |
|
|
dummy0 = seanindex(i, j, bw); |
| 417 |
|
|
dummy1 = seanindex(-i, j, bw); |
| 418 |
|
|
|
| 419 |
|
|
rcoeffs[dummy1] = |
| 420 |
|
|
pow_one * rcoeffs[dummy0]; |
| 421 |
|
|
icoeffs[dummy1] = |
| 422 |
|
|
-pow_one * icoeffs[dummy0]; |
| 423 |
|
|
} |
| 424 |
|
|
} |
| 425 |
|
|
} |
| 426 |
|
|
|
| 427 |
|
|
} |
| 428 |
|
|
|
| 429 |
|
|
/************************************************************************/ |
| 430 |
|
|
/* Inverse spherical harmonic transform. |
| 431 |
|
|
|
| 432 |
|
|
bw -> bandwidth of problem |
| 433 |
|
|
size = 2*bw |
| 434 |
|
|
|
| 435 |
|
|
Inputs rcoeffs and icoeffs are harmonic coefficients stored |
| 436 |
|
|
in (bw * bw) arrays in the order spec'ed above. |
| 437 |
|
|
|
| 438 |
|
|
rdata and idata are (size x size) arrays with the transformed result. |
| 439 |
|
|
|
| 440 |
|
|
transpose_spharmonic_pml_table should be the (double **) |
| 441 |
|
|
result of a call to Transpose_Spharmonic_Pml_Table() |
| 442 |
|
|
|
| 443 |
|
|
workspace is (8 * bw^2) + (10 * bw) |
| 444 |
|
|
|
| 445 |
|
|
*/ |
| 446 |
|
|
|
| 447 |
|
|
/* dataformat =0 -> samples are complex, =1 -> samples real */ |
| 448 |
|
|
|
| 449 |
|
|
void InvFST_semi_memo(double *rcoeffs, double *icoeffs, |
| 450 |
|
|
double *rdata, double *idata, |
| 451 |
|
|
int bw, |
| 452 |
|
|
double **transpose_seminaive_naive_table, |
| 453 |
|
|
double *workspace, |
| 454 |
|
|
int dataformat, |
| 455 |
|
|
int cutoff, |
| 456 |
|
|
fftw_plan *idctPlan, |
| 457 |
|
|
fftw_plan *ifftPlan ) |
| 458 |
|
|
{ |
| 459 |
|
|
int size, m, i, n; |
| 460 |
|
|
double *rdataptr, *idataptr; |
| 461 |
|
|
double *rfourdata, *ifourdata; |
| 462 |
|
|
double *rinvfltres, *iminvfltres, *scratchpad; |
| 463 |
|
|
double *sin_values, *eval_pts; |
| 464 |
|
|
double tmpA ; |
| 465 |
|
|
|
| 466 |
|
|
size = 2*bw ; |
| 467 |
|
|
|
| 468 |
|
|
rfourdata = workspace; /* needs (size * size) */ |
| 469 |
|
|
ifourdata = rfourdata + (size * size); /* needs (size * size) */ |
| 470 |
|
|
rinvfltres = ifourdata + (size * size); /* needs (2 * bw) */ |
| 471 |
|
|
iminvfltres = rinvfltres + (2 * bw); /* needs (2 * bw) */ |
| 472 |
|
|
sin_values = iminvfltres + (2 * bw); /* needs (2 * bw) */ |
| 473 |
|
|
eval_pts = sin_values + (2 * bw); /* needs (2 * bw) */ |
| 474 |
|
|
scratchpad = eval_pts + (2 * bw); /* needs (2 * bw) */ |
| 475 |
|
|
|
| 476 |
|
|
/* total workspace = (8 * bw^2) + (10 * bw) */ |
| 477 |
|
|
|
| 478 |
|
|
/* load up the sin_values array */ |
| 479 |
|
|
n = 2*bw; |
| 480 |
|
|
|
| 481 |
|
|
ArcCosEvalPts(n, eval_pts); |
| 482 |
|
|
for (i=0; i<n; i++) |
| 483 |
|
|
sin_values[i] = sin(eval_pts[i]); |
| 484 |
|
|
|
| 485 |
|
|
|
| 486 |
|
|
/* Now do all of the inverse Legendre transforms */ |
| 487 |
|
|
rdataptr = rcoeffs; |
| 488 |
|
|
idataptr = icoeffs; |
| 489 |
|
|
|
| 490 |
|
|
for (m=0; m<bw; m++) |
| 491 |
|
|
{ |
| 492 |
|
|
/* |
| 493 |
|
|
fprintf(stderr,"m = %d\n",m); |
| 494 |
|
|
*/ |
| 495 |
|
|
|
| 496 |
|
|
if(m < cutoff) |
| 497 |
|
|
{ |
| 498 |
|
|
/* do real part first */ |
| 499 |
|
|
InvSemiNaiveReduced(rdataptr, |
| 500 |
|
|
bw, |
| 501 |
|
|
m, |
| 502 |
|
|
rinvfltres, |
| 503 |
|
|
transpose_seminaive_naive_table[m], |
| 504 |
|
|
sin_values, |
| 505 |
|
|
scratchpad, |
| 506 |
|
|
idctPlan ); |
| 507 |
|
|
|
| 508 |
|
|
/* now do imaginary part */ |
| 509 |
|
|
|
| 510 |
|
|
InvSemiNaiveReduced(idataptr, |
| 511 |
|
|
bw, |
| 512 |
|
|
m, |
| 513 |
|
|
iminvfltres, |
| 514 |
|
|
transpose_seminaive_naive_table[m], |
| 515 |
|
|
sin_values, |
| 516 |
|
|
scratchpad, |
| 517 |
|
|
idctPlan); |
| 518 |
|
|
|
| 519 |
|
|
/* will store normal, then tranpose before doing inverse fft */ |
| 520 |
|
|
memcpy(rfourdata+(m*size), rinvfltres, sizeof(double) * size); |
| 521 |
|
|
memcpy(ifourdata+(m*size), iminvfltres, sizeof(double) * size); |
| 522 |
|
|
|
| 523 |
|
|
/* move to next set of coeffs */ |
| 524 |
|
|
rdataptr += bw-m; |
| 525 |
|
|
idataptr += bw-m; |
| 526 |
|
|
|
| 527 |
|
|
} |
| 528 |
|
|
else |
| 529 |
|
|
{ |
| 530 |
|
|
|
| 531 |
|
|
/* first do the real part */ |
| 532 |
|
|
Naive_SynthesizeX(rdataptr, |
| 533 |
|
|
bw, |
| 534 |
|
|
m, |
| 535 |
|
|
rinvfltres, |
| 536 |
|
|
transpose_seminaive_naive_table[m]); |
| 537 |
|
|
|
| 538 |
|
|
/* now do the imaginary */ |
| 539 |
|
|
Naive_SynthesizeX(idataptr, |
| 540 |
|
|
bw, |
| 541 |
|
|
m, |
| 542 |
|
|
iminvfltres, |
| 543 |
|
|
transpose_seminaive_naive_table[m]); |
| 544 |
|
|
|
| 545 |
|
|
/* will store normal, then tranpose before doing inverse fft */ |
| 546 |
|
|
memcpy(rfourdata+(m*size), rinvfltres, sizeof(double) * size); |
| 547 |
|
|
memcpy(ifourdata+(m*size), iminvfltres, sizeof(double) * size); |
| 548 |
|
|
|
| 549 |
|
|
/* move to next set of coeffs */ |
| 550 |
|
|
|
| 551 |
|
|
rdataptr += bw-m; |
| 552 |
|
|
idataptr += bw-m; |
| 553 |
|
|
|
| 554 |
|
|
} |
| 555 |
|
|
} |
| 556 |
|
|
/* closes m loop */ |
| 557 |
|
|
|
| 558 |
|
|
/* now fill in zero values where m = bw (from problem definition) */ |
| 559 |
|
|
memset(rfourdata + (bw * size), 0, sizeof(double) * size); |
| 560 |
|
|
memset(ifourdata + (bw * size), 0, sizeof(double) * size); |
| 561 |
|
|
|
| 562 |
|
|
/* now if the data is real, we don't have to compute the |
| 563 |
|
|
coefficients whose order is less than 0, i.e. since |
| 564 |
|
|
the data is real, we know that |
| 565 |
|
|
invf-hat(l,-m) = conjugate(invf-hat(l,m)), |
| 566 |
|
|
so use that to get the rest of the real data |
| 567 |
|
|
|
| 568 |
|
|
dataformat =0 -> samples are complex, =1 -> samples real |
| 569 |
|
|
|
| 570 |
|
|
*/ |
| 571 |
|
|
|
| 572 |
|
|
if(dataformat == 0){ |
| 573 |
|
|
|
| 574 |
|
|
/* now do negative m values */ |
| 575 |
|
|
|
| 576 |
|
|
for (m=bw+1; m<size; m++) |
| 577 |
|
|
{ |
| 578 |
|
|
/* |
| 579 |
|
|
fprintf(stderr,"m = %d\n",-(size-m)); |
| 580 |
|
|
*/ |
| 581 |
|
|
|
| 582 |
|
|
if ( (size-m) < cutoff ) |
| 583 |
|
|
{ |
| 584 |
|
|
/* do real part first */ |
| 585 |
|
|
InvSemiNaiveReduced(rdataptr, |
| 586 |
|
|
bw, |
| 587 |
|
|
size - m, |
| 588 |
|
|
rinvfltres, |
| 589 |
|
|
transpose_seminaive_naive_table[size - m], |
| 590 |
|
|
sin_values, |
| 591 |
|
|
scratchpad, |
| 592 |
|
|
idctPlan); |
| 593 |
|
|
|
| 594 |
|
|
/* now do imaginary part */ |
| 595 |
|
|
InvSemiNaiveReduced(idataptr, |
| 596 |
|
|
bw, |
| 597 |
|
|
size - m, |
| 598 |
|
|
iminvfltres, |
| 599 |
|
|
transpose_seminaive_naive_table[size - m], |
| 600 |
|
|
sin_values, |
| 601 |
|
|
scratchpad, |
| 602 |
|
|
idctPlan ); |
| 603 |
|
|
|
| 604 |
|
|
/* will store normal, then tranpose before doing inverse fft */ |
| 605 |
|
|
if ((m % 2) != 0) |
| 606 |
|
|
for(i=0; i< size; i++){ |
| 607 |
|
|
rinvfltres[i] = -rinvfltres[i]; |
| 608 |
|
|
iminvfltres[i] = -iminvfltres[i]; |
| 609 |
|
|
} |
| 610 |
|
|
|
| 611 |
|
|
memcpy(rfourdata + (m*size), rinvfltres, sizeof(double) * size); |
| 612 |
|
|
memcpy(ifourdata + (m*size), iminvfltres, sizeof(double) * size); |
| 613 |
|
|
|
| 614 |
|
|
/* move to next set of coeffs */ |
| 615 |
|
|
rdataptr += bw-(size-m); |
| 616 |
|
|
idataptr += bw-(size-m); |
| 617 |
|
|
} |
| 618 |
|
|
else |
| 619 |
|
|
{ |
| 620 |
|
|
/* first do the real part */ |
| 621 |
|
|
Naive_SynthesizeX(rdataptr, |
| 622 |
|
|
bw, |
| 623 |
|
|
size-m, |
| 624 |
|
|
rinvfltres, |
| 625 |
|
|
transpose_seminaive_naive_table[size-m]); |
| 626 |
|
|
|
| 627 |
|
|
/* now do the imaginary */ |
| 628 |
|
|
Naive_SynthesizeX(idataptr, |
| 629 |
|
|
bw, |
| 630 |
|
|
size-m, |
| 631 |
|
|
iminvfltres, |
| 632 |
|
|
transpose_seminaive_naive_table[size-m]); |
| 633 |
|
|
|
| 634 |
|
|
/* will store normal, then tranpose before doing inverse fft */ |
| 635 |
|
|
if ((m % 2) != 0) |
| 636 |
|
|
for(i=0; i< size; i++){ |
| 637 |
|
|
rinvfltres[i] = -rinvfltres[i]; |
| 638 |
|
|
iminvfltres[i] = -iminvfltres[i]; |
| 639 |
|
|
} |
| 640 |
|
|
|
| 641 |
|
|
memcpy(rfourdata + (m*size), rinvfltres, sizeof(double) * size); |
| 642 |
|
|
memcpy(ifourdata + (m*size), iminvfltres, sizeof(double) * size); |
| 643 |
|
|
|
| 644 |
|
|
/* move to next set of coeffs */ |
| 645 |
|
|
rdataptr += bw-(size-m); |
| 646 |
|
|
idataptr += bw-(size-m); |
| 647 |
|
|
|
| 648 |
|
|
} |
| 649 |
|
|
|
| 650 |
|
|
} /* closes m loop */ |
| 651 |
|
|
} |
| 652 |
|
|
else { |
| 653 |
|
|
for(m = bw + 1; m < size; m++){ |
| 654 |
|
|
|
| 655 |
|
|
memcpy(rfourdata+(m*size), rfourdata+((size-m)*size), |
| 656 |
|
|
sizeof(double) * size); |
| 657 |
|
|
memcpy(ifourdata+(m*size), ifourdata+((size-m)*size), |
| 658 |
|
|
sizeof(double) * size); |
| 659 |
|
|
for(i = 0; i < size; i++) |
| 660 |
|
|
ifourdata[(m*size)+i] *= -1.0; |
| 661 |
|
|
} |
| 662 |
|
|
} |
| 663 |
|
|
|
| 664 |
|
|
/* normalize */ |
| 665 |
|
|
tmpA = 1./(sqrt(2.*M_PI) ); |
| 666 |
|
|
for(i=0;i<4*bw*bw;i++) |
| 667 |
|
|
{ |
| 668 |
|
|
rfourdata[i] *= tmpA ; |
| 669 |
|
|
ifourdata[i] *= tmpA ; |
| 670 |
|
|
} |
| 671 |
|
|
|
| 672 |
|
|
|
| 673 |
|
|
fftw_execute_split_dft( *ifftPlan, |
| 674 |
|
|
ifourdata, rfourdata, |
| 675 |
|
|
idata, rdata ); |
| 676 |
|
|
/* amscray */ |
| 677 |
|
|
|
| 678 |
|
|
} |
| 679 |
|
|
|
| 680 |
|
|
/************************************************************************/ |
| 681 |
|
|
/* |
| 682 |
|
|
Zonal Harmonic transform using seminaive algorithm - used in convolutions |
| 683 |
|
|
|
| 684 |
|
|
bw -> bandwidth of problem |
| 685 |
|
|
|
| 686 |
|
|
size = 2 * bw |
| 687 |
|
|
|
| 688 |
|
|
rdata and idata should be pointers to size x size arrays. |
| 689 |
|
|
rres and ires should be pointers to double arrays of size bw. |
| 690 |
|
|
|
| 691 |
|
|
cos_pml_table contains Legendre coefficients of P(0,l) functions |
| 692 |
|
|
and is result of CosPmlTableGen for m = 0; |
| 693 |
|
|
FZT_semi only computes spherical harmonics for m=0. |
| 694 |
|
|
|
| 695 |
|
|
dataformat =0 -> samples are complex, =1 -> samples real |
| 696 |
|
|
|
| 697 |
|
|
workspace needed is (12 * bw) |
| 698 |
|
|
|
| 699 |
|
|
*/ |
| 700 |
|
|
|
| 701 |
|
|
void FZT_semi_memo(double *rdata, double *idata, |
| 702 |
|
|
double *rres, double *ires, |
| 703 |
|
|
int bw, |
| 704 |
|
|
double *cos_pml_table, |
| 705 |
|
|
double *workspace, |
| 706 |
|
|
int dataformat, |
| 707 |
|
|
fftw_plan *dctPlan, |
| 708 |
|
|
double *weights ) |
| 709 |
|
|
{ |
| 710 |
|
|
int i, j, size; |
| 711 |
|
|
double *r0, *i0, dsize; |
| 712 |
|
|
double tmpreal, tmpimag; |
| 713 |
|
|
double tmpA ; |
| 714 |
|
|
double *scratchpad ; |
| 715 |
|
|
|
| 716 |
|
|
size = 2*bw ; |
| 717 |
|
|
|
| 718 |
|
|
/* assign memory */ |
| 719 |
|
|
r0 = workspace; /* needs (2 * bw) */ |
| 720 |
|
|
i0 = r0 + (2 * bw); /* needs (2 * bw) */ |
| 721 |
|
|
scratchpad = i0 + (2 * bw); /* needs (4 * bw) */ |
| 722 |
|
|
|
| 723 |
|
|
/* total workspace = 13*bw */ |
| 724 |
|
|
|
| 725 |
|
|
dsize = 1.0 / ((double) size); |
| 726 |
|
|
tmpA = sqrt( 2.* M_PI ); |
| 727 |
|
|
dsize *= tmpA ; |
| 728 |
|
|
|
| 729 |
|
|
/* compute the m = 0 components */ |
| 730 |
|
|
for (i=0; i<size; i++) { |
| 731 |
|
|
tmpreal = 0.0; |
| 732 |
|
|
tmpimag = 0.0; |
| 733 |
|
|
|
| 734 |
|
|
for(j=0; j<size; j++) { |
| 735 |
|
|
tmpreal += rdata[(i*size)+j]; |
| 736 |
|
|
tmpimag += idata[(i*size)+j]; |
| 737 |
|
|
} |
| 738 |
|
|
/* normalize */ |
| 739 |
|
|
r0[i] = tmpreal*dsize; |
| 740 |
|
|
i0[i] = tmpimag*dsize; |
| 741 |
|
|
} |
| 742 |
|
|
|
| 743 |
|
|
/* do the real part */ |
| 744 |
|
|
SemiNaiveReduced(r0, |
| 745 |
|
|
bw, |
| 746 |
|
|
0, |
| 747 |
|
|
rres, |
| 748 |
|
|
scratchpad, |
| 749 |
|
|
cos_pml_table, |
| 750 |
|
|
weights, |
| 751 |
|
|
dctPlan); |
| 752 |
|
|
|
| 753 |
|
|
if(dataformat == 0) /* do imaginary part */ |
| 754 |
|
|
SemiNaiveReduced(i0, |
| 755 |
|
|
bw, |
| 756 |
|
|
0, |
| 757 |
|
|
ires, |
| 758 |
|
|
scratchpad, |
| 759 |
|
|
cos_pml_table, |
| 760 |
|
|
weights, |
| 761 |
|
|
dctPlan); |
| 762 |
|
|
else /* otherwise set coefficients = 0 */ |
| 763 |
|
|
memset(ires, 0, sizeof(double) * size); |
| 764 |
|
|
|
| 765 |
|
|
} |
| 766 |
|
|
|
| 767 |
|
|
/************************************************************************/ |
| 768 |
|
|
/* |
| 769 |
|
|
multiplies harmonic coefficients of a function and a filter. |
| 770 |
|
|
See convolution theorem of Driscoll and Healy for details. |
| 771 |
|
|
|
| 772 |
|
|
bw -> bandwidth of problem |
| 773 |
|
|
size = 2*bw |
| 774 |
|
|
|
| 775 |
|
|
datacoeffs should be output of an FST, filtercoeffs the |
| 776 |
|
|
output of an FZT. There should be (bw * bw) datacoeffs, |
| 777 |
|
|
and bw filtercoeffs. |
| 778 |
|
|
rres and ires should point to arrays of dimension bw * bw. |
| 779 |
|
|
|
| 780 |
|
|
*/ |
| 781 |
|
|
|
| 782 |
|
|
void TransMult(double *rdatacoeffs, double *idatacoeffs, |
| 783 |
|
|
double *rfiltercoeffs, double *ifiltercoeffs, |
| 784 |
|
|
double *rres, double *ires, |
| 785 |
|
|
int bw) |
| 786 |
|
|
{ |
| 787 |
|
|
|
| 788 |
|
|
int m, l, size; |
| 789 |
|
|
double *rdptr, *idptr, *rrptr, *irptr; |
| 790 |
|
|
|
| 791 |
|
|
size = 2*bw ; |
| 792 |
|
|
|
| 793 |
|
|
rdptr = rdatacoeffs; |
| 794 |
|
|
idptr = idatacoeffs; |
| 795 |
|
|
rrptr = rres; |
| 796 |
|
|
irptr = ires; |
| 797 |
|
|
|
| 798 |
|
|
for (m=0; m<bw; m++) { |
| 799 |
|
|
for (l=m; l<bw; l++) { |
| 800 |
|
|
compmult(rfiltercoeffs[l], ifiltercoeffs[l], |
| 801 |
|
|
rdptr[l-m], idptr[l-m], |
| 802 |
|
|
rrptr[l-m], irptr[l-m]); |
| 803 |
|
|
|
| 804 |
|
|
rrptr[l-m] *= sqrt(4*M_PI/(2*l+1)); |
| 805 |
|
|
irptr[l-m] *= sqrt(4*M_PI/(2*l+1)); |
| 806 |
|
|
|
| 807 |
|
|
} |
| 808 |
|
|
rdptr += bw-m; idptr += bw-m; |
| 809 |
|
|
rrptr += bw-m; irptr += bw-m; |
| 810 |
|
|
} |
| 811 |
|
|
for (m=bw+1; m<size; m++) { |
| 812 |
|
|
for (l=size-m; l<bw; l++){ |
| 813 |
|
|
compmult(rfiltercoeffs[l], ifiltercoeffs[l], |
| 814 |
|
|
rdptr[l-size+m], idptr[l-size+m], |
| 815 |
|
|
rrptr[l-size+m], irptr[l-size+m]); |
| 816 |
|
|
|
| 817 |
|
|
rrptr[l-size+m] *= sqrt(4*M_PI/(2*l+1)); |
| 818 |
|
|
irptr[l-size+m] *= sqrt(4*M_PI/(2*l+1)); |
| 819 |
|
|
|
| 820 |
|
|
} |
| 821 |
|
|
rdptr += m-bw; idptr += m-bw; |
| 822 |
|
|
rrptr += m-bw; irptr += m-bw; |
| 823 |
|
|
} |
| 824 |
|
|
|
| 825 |
|
|
} |
| 826 |
|
|
|
| 827 |
|
|
/************************************************************************/ |
| 828 |
|
|
/* Here's the big banana |
| 829 |
|
|
Convolves two functions defined on the 2-sphere. |
| 830 |
|
|
Uses seminaive algorithms for spherical harmonic transforms |
| 831 |
|
|
|
| 832 |
|
|
size = 2*bw |
| 833 |
|
|
|
| 834 |
|
|
Inputs: |
| 835 |
|
|
|
| 836 |
|
|
rdata, idata - (size * size) arrays containing real and |
| 837 |
|
|
imaginary parts of sampled function. |
| 838 |
|
|
rfilter, ifilter - (size * size) arrays containing real and |
| 839 |
|
|
imaginary parts of sampled filter function. |
| 840 |
|
|
rres, ires - (size * size) arrays containing real and |
| 841 |
|
|
imaginary parts of result function. |
| 842 |
|
|
|
| 843 |
|
|
|
| 844 |
|
|
Suggestion - if you want to do multiple convolutions, |
| 845 |
|
|
don't keep allocating and freeing space with every call, |
| 846 |
|
|
or keep recomputing the spharmonic_pml tables. |
| 847 |
|
|
Allocate workspace once before you call this function, then |
| 848 |
|
|
just set up pointers as first step of this procedure rather |
| 849 |
|
|
than mallocing. And do the same with the FST, FZT, and InvFST functions. |
| 850 |
|
|
|
| 851 |
|
|
ASSUMPTIONS: |
| 852 |
|
|
1. data is strictly REAL |
| 853 |
|
|
2. will do semi-naive algorithm for ALL orders -> change the cutoff |
| 854 |
|
|
value if you want it to be different |
| 855 |
|
|
|
| 856 |
|
|
Memory requirements for Conv2Sphere |
| 857 |
|
|
|
| 858 |
|
|
Need space for spharmonic tables and local workspace and |
| 859 |
|
|
scratchpad space for FST_semi |
| 860 |
|
|
|
| 861 |
|
|
Let legendreSize = Reduced_Naive_TableSize(bw,cutoff) + |
| 862 |
|
|
Reduced_SpharmonicTableSize(bw,cutoff) |
| 863 |
|
|
|
| 864 |
|
|
Then the workspace needs to be this large: |
| 865 |
|
|
|
| 866 |
|
|
2 * legendreSize + |
| 867 |
|
|
8 * (bw*bw) + 10*bw + |
| 868 |
|
|
4 * (bw*bw) + 2*bw |
| 869 |
|
|
|
| 870 |
|
|
for a total of |
| 871 |
|
|
|
| 872 |
|
|
2 * legendreSize + |
| 873 |
|
|
12 * (bw*bw) + 12*bw ; |
| 874 |
|
|
|
| 875 |
|
|
|
| 876 |
|
|
|
| 877 |
|
|
*/ |
| 878 |
|
|
void Conv2Sphere_semi_memo(double *rdata, double *idata, |
| 879 |
|
|
double *rfilter, double *ifilter, |
| 880 |
|
|
double *rres, double *ires, |
| 881 |
|
|
int bw, |
| 882 |
|
|
double *workspace) |
| 883 |
|
|
{ |
| 884 |
|
|
int size, spharmonic_bound ; |
| 885 |
|
|
int legendreSize, cutoff ; |
| 886 |
|
|
double *frres, *fires, *filtrres, *filtires, *trres, *tires; |
| 887 |
|
|
double **spharmonic_pml_table, **transpose_spharmonic_pml_table; |
| 888 |
|
|
double *spharmonic_result_space, *transpose_spharmonic_result_space; |
| 889 |
|
|
double *scratchpad; |
| 890 |
|
|
|
| 891 |
|
|
/* fftw */ |
| 892 |
|
|
int rank, howmany_rank ; |
| 893 |
|
|
fftw_iodim dims[1], howmany_dims[1]; |
| 894 |
|
|
|
| 895 |
|
|
/* forward transform stuff */ |
| 896 |
|
|
fftw_plan dctPlan, fftPlan ; |
| 897 |
|
|
double *weights ; |
| 898 |
|
|
|
| 899 |
|
|
/* inverse transform stuff */ |
| 900 |
|
|
fftw_plan idctPlan, ifftPlan ; |
| 901 |
|
|
|
| 902 |
|
|
size =2*bw ; |
| 903 |
|
|
cutoff = bw ; |
| 904 |
|
|
legendreSize = Reduced_Naive_TableSize(bw,cutoff) + |
| 905 |
|
|
Reduced_SpharmonicTableSize(bw,cutoff) ; |
| 906 |
|
|
|
| 907 |
|
|
/* assign space */ |
| 908 |
|
|
|
| 909 |
|
|
spharmonic_bound = legendreSize ; |
| 910 |
|
|
|
| 911 |
|
|
spharmonic_result_space = workspace; /* needs legendreSize */ |
| 912 |
|
|
|
| 913 |
|
|
transpose_spharmonic_result_space = |
| 914 |
|
|
spharmonic_result_space + legendreSize ; /* needs legendreSize */ |
| 915 |
|
|
|
| 916 |
|
|
frres = transpose_spharmonic_result_space + |
| 917 |
|
|
legendreSize ; /* needs (bw*bw) */ |
| 918 |
|
|
fires = frres + (bw*bw); /* needs (bw*bw) */ |
| 919 |
|
|
trres = fires + (bw*bw); /* needs (bw*bw) */ |
| 920 |
|
|
tires = trres + (bw*bw); /* needs (bw*bw) */ |
| 921 |
|
|
filtrres = tires + (bw*bw); /* needs bw */ |
| 922 |
|
|
filtires = filtrres + bw; /* needs bw */ |
| 923 |
|
|
scratchpad = filtires + bw; /* needs (8*bw^2)+(10*bw) */ |
| 924 |
|
|
|
| 925 |
|
|
/* allocate space, and compute, the weights for this bandwidth */ |
| 926 |
|
|
weights = (double *) malloc(sizeof(double) * 4 * bw); |
| 927 |
|
|
makeweights( bw, weights ); |
| 928 |
|
|
|
| 929 |
|
|
/* make the fftw plans */ |
| 930 |
|
|
|
| 931 |
|
|
/* make DCT plans -> note that I will be using the GURU |
| 932 |
|
|
interface to execute these plans within the routines*/ |
| 933 |
|
|
|
| 934 |
|
|
/* forward DCT */ |
| 935 |
|
|
dctPlan = fftw_plan_r2r_1d( 2*bw, weights, rdata, |
| 936 |
|
|
FFTW_REDFT10, FFTW_ESTIMATE ) ; |
| 937 |
|
|
|
| 938 |
|
|
/* inverse DCT */ |
| 939 |
|
|
idctPlan = fftw_plan_r2r_1d( 2*bw, weights, rdata, |
| 940 |
|
|
FFTW_REDFT01, FFTW_ESTIMATE ); |
| 941 |
|
|
|
| 942 |
|
|
/* |
| 943 |
|
|
fft "preamble" ; |
| 944 |
|
|
note that this plan places the output in a transposed array |
| 945 |
|
|
*/ |
| 946 |
|
|
rank = 1 ; |
| 947 |
|
|
dims[0].n = 2*bw ; |
| 948 |
|
|
dims[0].is = 1 ; |
| 949 |
|
|
dims[0].os = 2*bw ; |
| 950 |
|
|
howmany_rank = 1 ; |
| 951 |
|
|
howmany_dims[0].n = 2*bw ; |
| 952 |
|
|
howmany_dims[0].is = 2*bw ; |
| 953 |
|
|
howmany_dims[0].os = 1 ; |
| 954 |
|
|
|
| 955 |
|
|
/* forward fft */ |
| 956 |
|
|
fftPlan = fftw_plan_guru_split_dft( rank, dims, |
| 957 |
|
|
howmany_rank, howmany_dims, |
| 958 |
|
|
rdata, idata, |
| 959 |
|
|
workspace, workspace+(4*bw*bw), |
| 960 |
|
|
FFTW_ESTIMATE ); |
| 961 |
|
|
|
| 962 |
|
|
/* |
| 963 |
|
|
now plan for inverse fft - note that this plans assumes |
| 964 |
|
|
that I'm working with a transposed array, e.g. the inputs |
| 965 |
|
|
for a length 2*bw transform are placed every 2*bw apart, |
| 966 |
|
|
the output will be consecutive entries in the array |
| 967 |
|
|
*/ |
| 968 |
|
|
rank = 1 ; |
| 969 |
|
|
dims[0].n = 2*bw ; |
| 970 |
|
|
dims[0].is = 2*bw ; |
| 971 |
|
|
dims[0].os = 1 ; |
| 972 |
|
|
howmany_rank = 1 ; |
| 973 |
|
|
howmany_dims[0].n = 2*bw ; |
| 974 |
|
|
howmany_dims[0].is = 1 ; |
| 975 |
|
|
howmany_dims[0].os = 2*bw ; |
| 976 |
|
|
|
| 977 |
|
|
/* inverse fft */ |
| 978 |
|
|
ifftPlan = fftw_plan_guru_split_dft( rank, dims, |
| 979 |
|
|
howmany_rank, howmany_dims, |
| 980 |
|
|
rdata, idata, |
| 981 |
|
|
workspace, workspace+(4*bw*bw), |
| 982 |
|
|
FFTW_ESTIMATE ); |
| 983 |
|
|
|
| 984 |
|
|
|
| 985 |
|
|
/* precompute the associated Legendre fcts */ |
| 986 |
|
|
spharmonic_pml_table = |
| 987 |
|
|
Spharmonic_Pml_Table(bw, |
| 988 |
|
|
spharmonic_result_space, |
| 989 |
|
|
scratchpad); |
| 990 |
|
|
|
| 991 |
|
|
transpose_spharmonic_pml_table = |
| 992 |
|
|
Transpose_Spharmonic_Pml_Table(spharmonic_pml_table, |
| 993 |
|
|
bw, |
| 994 |
|
|
transpose_spharmonic_result_space, |
| 995 |
|
|
scratchpad); |
| 996 |
|
|
FST_semi_memo(rdata, idata, |
| 997 |
|
|
frres, fires, |
| 998 |
|
|
bw, |
| 999 |
|
|
spharmonic_pml_table, |
| 1000 |
|
|
scratchpad, |
| 1001 |
|
|
1, |
| 1002 |
|
|
bw, |
| 1003 |
|
|
&dctPlan, |
| 1004 |
|
|
&fftPlan, |
| 1005 |
|
|
weights ); |
| 1006 |
|
|
|
| 1007 |
|
|
FZT_semi_memo(rfilter, ifilter, |
| 1008 |
|
|
filtrres, filtires, |
| 1009 |
|
|
bw, |
| 1010 |
|
|
spharmonic_pml_table[0], |
| 1011 |
|
|
scratchpad, |
| 1012 |
|
|
1, |
| 1013 |
|
|
&dctPlan, |
| 1014 |
|
|
weights ); |
| 1015 |
|
|
|
| 1016 |
|
|
TransMult(frres, fires, filtrres, filtires, trres, tires, bw); |
| 1017 |
|
|
|
| 1018 |
|
|
InvFST_semi_memo(trres, tires, |
| 1019 |
|
|
rres, ires, |
| 1020 |
|
|
bw, |
| 1021 |
|
|
transpose_spharmonic_pml_table, |
| 1022 |
|
|
scratchpad, |
| 1023 |
|
|
1, |
| 1024 |
|
|
bw, |
| 1025 |
|
|
&idctPlan, |
| 1026 |
|
|
&ifftPlan ); |
| 1027 |
|
|
|
| 1028 |
|
|
free( weights ) ; |
| 1029 |
|
|
|
| 1030 |
|
|
/*** |
| 1031 |
|
|
have to free the memory that was allocated in |
| 1032 |
|
|
Spharmonic_Pml_Table() and |
| 1033 |
|
|
Transpose_Spharmonic_Pml_Table() |
| 1034 |
|
|
***/ |
| 1035 |
|
|
|
| 1036 |
|
|
free(spharmonic_pml_table); |
| 1037 |
|
|
free(transpose_spharmonic_pml_table); |
| 1038 |
|
|
|
| 1039 |
|
|
/* destroy plans */ |
| 1040 |
|
|
fftw_destroy_plan( ifftPlan ) ; |
| 1041 |
|
|
fftw_destroy_plan( fftPlan ) ; |
| 1042 |
|
|
fftw_destroy_plan( idctPlan ) ; |
| 1043 |
|
|
fftw_destroy_plan( dctPlan ) ; |
| 1044 |
|
|
} |