1 |
+ |
|
2 |
|
#include <iostream> |
3 |
+ |
#include <vector> |
4 |
+ |
#include <algorithm> |
5 |
|
|
6 |
|
#include <cstdlib> |
7 |
|
#include <cstring> |
8 |
|
#include <cmath> |
9 |
|
|
10 |
+ |
|
11 |
|
#include "simError.h" |
12 |
|
#include "SimInfo.hpp" |
13 |
|
#include "ReadWrite.hpp" |
16 |
|
#include "sysBuild.hpp" |
17 |
|
#include "bilayerSys.hpp" |
18 |
|
|
19 |
+ |
#include "latticeBuilder.hpp" |
20 |
|
|
21 |
+ |
class SortCond{ |
22 |
+ |
|
23 |
+ |
public: |
24 |
+ |
bool operator()(const pair<int, double>& p1, const pair<int, double>& p2){ |
25 |
+ |
return p1.second < p2.second; |
26 |
+ |
} |
27 |
+ |
|
28 |
+ |
|
29 |
+ |
}; |
30 |
|
|
31 |
+ |
|
32 |
|
void buildMap( double &x, double &y, double &z, |
33 |
< |
double boxX, double boxY, double boxZ ); |
33 |
> |
double boxX, double boxY, double boxZ ); |
34 |
|
|
35 |
|
int buildRandomBilayer( void ); |
36 |
+ |
int buildLatticeBilayer( int isHexLattice, |
37 |
+ |
double hexSpacing, |
38 |
+ |
double aLat, |
39 |
+ |
double bLat, |
40 |
+ |
int targetNlipid, |
41 |
+ |
double targetWaterLipidRatio, |
42 |
+ |
double leafSpacing); |
43 |
|
|
44 |
|
void getRandomRot( double rot[3][3] ); |
45 |
+ |
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ); |
46 |
+ |
void getUnitRot( double unit[3], double rot[3][3] ); |
47 |
|
|
48 |
|
int buildBilayer( int isRandom ){ |
49 |
|
|
51 |
|
return buildRandomBilayer(); |
52 |
|
} |
53 |
|
else{ |
54 |
< |
sprintf( painCave.errMsg, |
55 |
< |
"Cannot currently create a non-random bilayer.\n" ); |
56 |
< |
painCave.isFatal = 1; |
57 |
< |
simError(); |
34 |
< |
return 0; |
54 |
> |
|
55 |
> |
|
56 |
> |
|
57 |
> |
return buildLatticeBilayer(); |
58 |
|
} |
59 |
|
} |
60 |
|
|
67 |
|
} coord; |
68 |
|
|
69 |
|
|
70 |
+ |
|
71 |
|
const double waterRho = 0.0334; // number density per cubic angstrom |
72 |
|
const double waterVol = 4.0 / waterRho; // volume occupied by 4 waters |
73 |
|
const double waterCell = 4.929; // fcc unit cell length |
74 |
|
|
75 |
+ |
Lattice myFCC( FCC_LATTICE_TYPE, waterCell ); |
76 |
+ |
double *posX, *posY, *posZ; |
77 |
+ |
double pos[3], posA[3], posB[3]; |
78 |
+ |
|
79 |
|
const double water_padding = 6.0; |
80 |
|
const double lipid_spaceing = 8.0; |
81 |
|
|
82 |
|
|
83 |
< |
int i,j,k, l; |
83 |
> |
int i,j,k, l, m; |
84 |
|
int nAtoms, atomIndex, molIndex, molID; |
85 |
|
int* molSeq; |
86 |
|
int* molMap; |
95 |
|
|
96 |
|
Atom** atoms; |
97 |
|
SimInfo* simnfo; |
98 |
+ |
SimState* theConfig; |
99 |
|
DumpWriter* writer; |
100 |
|
|
101 |
|
MoleculeStamp* lipidStamp; |
120 |
|
foundWater = 0; |
121 |
|
for(i=0; i<bsInfo.nComponents; i++){ |
122 |
|
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ |
123 |
< |
|
123 |
> |
|
124 |
|
foundLipid = 1; |
125 |
|
lipidStamp = bsInfo.compStamps[i]; |
126 |
|
nLipids = bsInfo.componentsNmol[i]; |
127 |
|
} |
128 |
|
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ |
129 |
< |
|
129 |
> |
|
130 |
|
foundWater = 1; |
131 |
< |
|
131 |
> |
|
132 |
|
waterStamp = bsInfo.compStamps[i]; |
133 |
|
nWaters = bsInfo.componentsNmol[i]; |
134 |
|
} |
141 |
|
simError(); |
142 |
|
} |
143 |
|
if( !foundWater ){ |
144 |
< |
sprintf(painCave.errMsg, |
145 |
< |
"Could not find solvent \"%s\" in the bass file.\n", |
144 |
> |
sprintf(painCave.errMsg, |
145 |
> |
"Could not find solvent \"%s\" in the bass file.\n", |
146 |
|
bsInfo.waterName ); |
147 |
|
painCave.isFatal = 1; |
148 |
|
simError(); |
157 |
|
waterLocate = new MoLocator( waterStamp ); |
158 |
|
waterNatoms = waterStamp->getNAtoms(); |
159 |
|
|
160 |
< |
nAtoms = nLipids * lipidNatoms; |
160 |
> |
nAtoms = lipidNatoms; |
161 |
|
|
162 |
< |
simnfo[0].n_atoms = nAtoms; |
163 |
< |
simnfo[0].atoms=new Atom*[nAtoms]; |
162 |
> |
simnfo[0].n_atoms = nAtoms; |
163 |
> |
simnfo[0].atoms=new Atom*[nAtoms]; |
164 |
|
|
165 |
< |
(simnfo[0]->getConfiguration())->createArrays( simnfo[0].n_atoms ); |
166 |
< |
for(i=0; i<simnfo[0].n_atoms; i++) simnfo[0].atoms[i]->setCoords(); |
165 |
> |
theConfig = simnfo[0].getConfiguration(); |
166 |
> |
theConfig->createArrays( simnfo[0].n_atoms ); |
167 |
|
|
168 |
< |
atoms=simnfo[0].atoms; |
168 |
> |
atoms=simnfo[0].atoms; |
169 |
|
|
170 |
|
|
171 |
|
// create the test box for initial water displacement |
189 |
|
for( i=0; i < nCells; i++ ){ |
190 |
|
for( j=0; j < nCells; j++ ){ |
191 |
|
for( k=0; k < nCells; k++ ){ |
192 |
< |
|
193 |
< |
waterX[ndx] = i * waterCell + x0; |
194 |
< |
waterY[ndx] = j * waterCell + y0; |
195 |
< |
waterZ[ndx] = k * waterCell + z0; |
196 |
< |
ndx++; |
197 |
< |
|
198 |
< |
waterX[ndx] = i * waterCell + 0.5 * waterCell + x0; |
199 |
< |
waterY[ndx] = j * waterCell + 0.5 * waterCell + y0; |
171 |
< |
waterZ[ndx] = k * waterCell + z0; |
172 |
< |
ndx++; |
173 |
< |
|
174 |
< |
waterX[ndx] = i * waterCell + x0; |
175 |
< |
waterY[ndx] = j * waterCell + 0.5 * waterCell + y0; |
176 |
< |
waterZ[ndx] = k * waterCell + 0.5 * waterCell + z0; |
177 |
< |
ndx++; |
178 |
< |
|
179 |
< |
waterX[ndx] = i * waterCell + 0.5 * waterCell + x0; |
180 |
< |
waterY[ndx] = j * waterCell + y0; |
181 |
< |
waterZ[ndx] = k * waterCell + 0.5 * waterCell + z0; |
182 |
< |
ndx++; |
192 |
> |
|
193 |
> |
myFCC.getLatticePoints(&posX, &posY, &posZ, i, j, k); |
194 |
> |
for(l=0; l<4; l++){ |
195 |
> |
waterX[ndx]=posX[l]; |
196 |
> |
waterY[ndx]=posY[l]; |
197 |
> |
waterZ[ndx]=posZ[l]; |
198 |
> |
ndx++; |
199 |
> |
} |
200 |
|
} |
201 |
|
} |
202 |
|
} |
219 |
|
testSite.pos[1] = 0.0; |
220 |
|
testSite.pos[2] = 0.0; |
221 |
|
|
222 |
< |
lipidLocate->placeMol( testSite.pos, testSite.rot, atoms, 0 ); |
222 |
> |
lipidLocate->placeMol( testSite.pos, testSite.rot, atoms, 0, theConfig ); |
223 |
|
|
224 |
|
int *isActive = new int[testWaters]; |
225 |
|
for(i=0; i<testWaters; i++) isActive[i] = 1; |
231 |
|
|
232 |
|
for(i=0; ( (i<testWaters) && isActive[i] ); i++){ |
233 |
|
for(j=0; ( (j<lipidNatoms) && isActive[i] ); j++){ |
234 |
+ |
|
235 |
+ |
atoms[j]->getPos( pos ); |
236 |
|
|
237 |
< |
dx = waterX[i] - atoms[j]->getX(); |
238 |
< |
dy = waterY[i] - atoms[j]->getY(); |
239 |
< |
dz = waterZ[i] - atoms[j]->getZ(); |
237 |
> |
dx = waterX[i] - pos[0]; |
238 |
> |
dy = waterY[i] - pos[1]; |
239 |
> |
dz = waterZ[i] - pos[2]; |
240 |
|
|
241 |
|
buildMap( dx, dy, dz, testBox, testBox, testBox ); |
242 |
|
|
243 |
|
dx2 = dx * dx; |
244 |
|
dy2 = dy * dy; |
245 |
|
dz2 = dz * dz; |
246 |
< |
|
246 |
> |
|
247 |
|
dSqr = dx2 + dy2 + dz2; |
248 |
|
if( dSqr < rCutSqr ){ |
249 |
|
isActive[i] = 0; |
258 |
|
|
259 |
|
// find the best box size for the sim |
260 |
|
|
261 |
+ |
int nCellsX, nCellsY, nCellsZ; |
262 |
+ |
|
263 |
+ |
const double boxTargetX = 66.22752; |
264 |
+ |
const double boxTargetY = 60.53088; |
265 |
+ |
|
266 |
+ |
nCellsX = (int)ceil(boxTargetX / waterCell); |
267 |
+ |
nCellsY = (int)ceil(boxTargetY / waterCell); |
268 |
+ |
|
269 |
|
int testTot; |
270 |
|
int done = 0; |
271 |
< |
ndx = 0; |
271 |
> |
nCellsZ = 0; |
272 |
|
while( !done ){ |
273 |
< |
|
274 |
< |
ndx++; |
275 |
< |
testTot = 4 * ndx * ndx * ndx; |
276 |
< |
|
273 |
> |
|
274 |
> |
nCellsZ++; |
275 |
> |
testTot = 4 * nCellsX * nCellsY * nCellsZ; |
276 |
> |
|
277 |
|
if( testTot >= targetWaters ) done = 1; |
278 |
|
} |
279 |
|
|
253 |
– |
nCells = ndx; |
254 |
– |
|
255 |
– |
|
280 |
|
// create the new water box to the new specifications |
281 |
|
|
282 |
< |
int newWaters = nCells * nCells * nCells * 4; |
282 |
> |
int newWaters = nCellsX * nCellsY * nCellsZ * 4; |
283 |
|
|
284 |
|
delete[] waterX; |
285 |
|
delete[] waterY; |
287 |
|
|
288 |
|
coord* waterSites = new coord[newWaters]; |
289 |
|
|
290 |
< |
double box_x = waterCell * nCells; |
291 |
< |
double box_y = waterCell * nCells; |
292 |
< |
double box_z = waterCell * nCells; |
293 |
< |
|
290 |
> |
double box_x = waterCell * nCellsX; |
291 |
> |
double box_y = waterCell * nCellsY; |
292 |
> |
double box_z = waterCell * nCellsZ; |
293 |
> |
|
294 |
|
// create an fcc lattice in the water box. |
295 |
|
|
296 |
|
ndx = 0; |
297 |
< |
for( i=0; i < nCells; i++ ){ |
298 |
< |
for( j=0; j < nCells; j++ ){ |
299 |
< |
for( k=0; k < nCells; k++ ){ |
300 |
< |
|
301 |
< |
waterSites[ndx].pos[0] = i * waterCell; |
302 |
< |
waterSites[ndx].pos[1] = j * waterCell; |
303 |
< |
waterSites[ndx].pos[2] = k * waterCell; |
304 |
< |
ndx++; |
305 |
< |
|
306 |
< |
waterSites[ndx].pos[0] = i * waterCell + 0.5 * waterCell; |
307 |
< |
waterSites[ndx].pos[1] = j * waterCell + 0.5 * waterCell; |
284 |
< |
waterSites[ndx].pos[2] = k * waterCell; |
285 |
< |
ndx++; |
286 |
< |
|
287 |
< |
waterSites[ndx].pos[0] = i * waterCell; |
288 |
< |
waterSites[ndx].pos[1] = j * waterCell + 0.5 * waterCell; |
289 |
< |
waterSites[ndx].pos[2] = k * waterCell + 0.5 * waterCell; |
290 |
< |
ndx++; |
291 |
< |
|
292 |
< |
waterSites[ndx].pos[0] = i * waterCell + 0.5 * waterCell; |
293 |
< |
waterSites[ndx].pos[1] = j * waterCell; |
294 |
< |
waterSites[ndx].pos[2] = k * waterCell + 0.5 * waterCell; |
295 |
< |
ndx++; |
297 |
> |
for( i=0; i < nCellsX; i++ ){ |
298 |
> |
for( j=0; j < nCellsY; j++ ){ |
299 |
> |
for( k=0; k < nCellsZ; k++ ){ |
300 |
> |
|
301 |
> |
myFCC.getLatticePoints(&posX, &posY, &posZ, i, j, k); |
302 |
> |
for(l=0; l<4; l++){ |
303 |
> |
waterSites[ndx].pos[0] = posX[l]; |
304 |
> |
waterSites[ndx].pos[1] = posY[l]; |
305 |
> |
waterSites[ndx].pos[2] = posZ[l]; |
306 |
> |
ndx++; |
307 |
> |
} |
308 |
|
} |
309 |
|
} |
310 |
|
} |
317 |
|
int reject; |
318 |
|
int testDX, acceptedDX; |
319 |
|
|
320 |
+ |
nAtoms = nLipids * lipidNatoms; |
321 |
+ |
|
322 |
+ |
simnfo[1].n_atoms = nAtoms; |
323 |
+ |
simnfo[1].atoms=new Atom*[nAtoms]; |
324 |
+ |
|
325 |
+ |
theConfig = simnfo[1].getConfiguration(); |
326 |
+ |
theConfig->createArrays( simnfo[1].n_atoms ); |
327 |
+ |
|
328 |
+ |
atoms=simnfo[1].atoms; |
329 |
+ |
|
330 |
|
rCutSqr = lipid_spaceing * lipid_spaceing; |
331 |
|
|
332 |
|
for(i=0; i<nLipids; i++ ){ |
333 |
|
done = 0; |
334 |
|
while( !done ){ |
335 |
< |
|
335 |
> |
|
336 |
|
lipidSites[i].pos[0] = drand48() * box_x; |
337 |
|
lipidSites[i].pos[1] = drand48() * box_y; |
338 |
|
lipidSites[i].pos[2] = drand48() * box_z; |
339 |
< |
|
339 |
> |
|
340 |
|
getRandomRot( lipidSites[i].rot ); |
341 |
< |
|
341 |
> |
|
342 |
|
ndx = i * lipidNatoms; |
343 |
|
|
344 |
|
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
345 |
< |
ndx ); |
346 |
< |
|
345 |
> |
ndx, theConfig ); |
346 |
> |
|
347 |
|
reject = 0; |
348 |
|
for( j=0; !reject && j<i; j++){ |
349 |
|
for(k=0; !reject && k<lipidNatoms; k++){ |
350 |
|
|
351 |
|
acceptedDX = j*lipidNatoms + k; |
352 |
|
for(l=0; !reject && l<lipidNatoms; l++){ |
353 |
< |
|
353 |
> |
|
354 |
|
testDX = ndx + l; |
355 |
|
|
356 |
< |
dx = atoms[testDX]->getX() - atoms[acceptedDX]->getX(); |
357 |
< |
dy = atoms[testDX]->getY() - atoms[acceptedDX]->getY(); |
336 |
< |
dz = atoms[testDX]->getZ() - atoms[acceptedDX]->getZ(); |
356 |
> |
atoms[testDX]->getPos( posA ); |
357 |
> |
atoms[acceptedDX]->getPos( posB ); |
358 |
|
|
359 |
+ |
dx = posA[0] - posB[0]; |
360 |
+ |
dy = posA[1] - posB[1]; |
361 |
+ |
dz = posA[2] - posB[2]; |
362 |
+ |
|
363 |
|
buildMap( dx, dy, dz, box_x, box_y, box_z ); |
364 |
< |
|
364 |
> |
|
365 |
|
dx2 = dx * dx; |
366 |
|
dy2 = dy * dy; |
367 |
|
dz2 = dz * dz; |
368 |
< |
|
368 |
> |
|
369 |
|
dSqr = dx2 + dy2 + dz2; |
370 |
|
if( dSqr < rCutSqr ) reject = 1; |
371 |
|
} |
378 |
|
} |
379 |
|
else{ |
380 |
|
done = 1; |
381 |
< |
std::cout << i << " has been accepted\n"; |
381 |
> |
std::cout << (i+1) << " has been accepted\n"; |
382 |
|
} |
383 |
|
} |
384 |
|
} |
385 |
|
|
386 |
+ |
|
387 |
+ |
// zSort of the lipid positions |
388 |
+ |
|
389 |
+ |
|
390 |
+ |
vector< pair<int,double> >zSortArray; |
391 |
+ |
for(i=0;i<nLipids;i++) |
392 |
+ |
zSortArray.push_back( make_pair(i, lipidSites[i].pos[2]) ); |
393 |
+ |
|
394 |
+ |
sort(zSortArray.begin(),zSortArray.end(),SortCond()); |
395 |
+ |
|
396 |
+ |
ofstream outFile( "./zipper.bass", ios::app); |
397 |
+ |
|
398 |
+ |
for(i=0; i<nLipids; i++){ |
399 |
+ |
outFile << "zConstraint[" << i << "]{\n" |
400 |
+ |
<< " molIndex = " << zSortArray[i].first << ";\n" |
401 |
+ |
<< " zPos = "; |
402 |
+ |
|
403 |
+ |
if(i<32) outFile << "60.0;\n"; |
404 |
+ |
else outFile << "100.0;\n"; |
405 |
+ |
|
406 |
+ |
outFile << " kRatio = 0.5;\n" |
407 |
+ |
<< "}\n"; |
408 |
+ |
} |
409 |
+ |
|
410 |
+ |
outFile.close(); |
411 |
+ |
|
412 |
+ |
|
413 |
|
// cut out the waters that overlap with the lipids. |
414 |
|
|
415 |
+ |
|
416 |
|
delete[] isActive; |
417 |
|
isActive = new int[newWaters]; |
418 |
|
for(i=0; i<newWaters; i++) isActive[i] = 1; |
422 |
|
for(i=0; ( (i<newWaters) && isActive[i] ); i++){ |
423 |
|
for(j=0; ( (j<nAtoms) && isActive[i] ); j++){ |
424 |
|
|
425 |
< |
dx = waterSites[i].pos[0] - atoms[j]->getX(); |
373 |
< |
dy = waterSites[i].pos[1] - atoms[j]->getY(); |
374 |
< |
dz = waterSites[i].pos[2] - atoms[j]->getZ(); |
425 |
> |
atoms[j]->getPos( pos ); |
426 |
|
|
427 |
+ |
dx = waterSites[i].pos[0] - pos[0]; |
428 |
+ |
dy = waterSites[i].pos[1] - pos[1]; |
429 |
+ |
dz = waterSites[i].pos[2] - pos[2]; |
430 |
+ |
|
431 |
|
buildMap( dx, dy, dz, box_x, box_y, box_z ); |
432 |
|
|
433 |
|
dx2 = dx * dx; |
434 |
|
dy2 = dy * dy; |
435 |
|
dz2 = dz * dz; |
436 |
< |
|
436 |
> |
|
437 |
|
dSqr = dx2 + dy2 + dz2; |
438 |
|
if( dSqr < rCutSqr ){ |
439 |
|
isActive[i] = 0; |
440 |
|
n_active--; |
441 |
+ |
|
442 |
+ |
|
443 |
|
} |
444 |
|
} |
445 |
|
} |
446 |
|
|
447 |
+ |
|
448 |
+ |
|
449 |
+ |
|
450 |
|
if( n_active < nWaters ){ |
451 |
< |
|
451 |
> |
|
452 |
|
sprintf( painCave.errMsg, |
453 |
|
"Too many waters were removed, edit code and try again.\n" ); |
454 |
< |
|
454 |
> |
|
455 |
|
painCave.isFatal = 1; |
456 |
|
simError(); |
457 |
|
} |
464 |
|
if( isActive[quickKill] ){ |
465 |
|
isActive[quickKill] = 0; |
466 |
|
n_active--; |
467 |
+ |
|
468 |
|
} |
469 |
|
} |
470 |
|
|
471 |
|
if( n_active != nWaters ){ |
472 |
< |
|
472 |
> |
|
473 |
|
sprintf( painCave.errMsg, |
474 |
|
"QuickKill didn't work right. n_active = %d, and nWaters = %d\n", |
475 |
|
n_active, nWaters ); |
479 |
|
|
480 |
|
// clean up our messes before building the final system. |
481 |
|
|
482 |
< |
for(i=0; i<nAtoms; i++){ |
483 |
< |
|
423 |
< |
delete atoms[i]; |
424 |
< |
} |
425 |
< |
Atom::destroyArrays(); |
426 |
< |
|
482 |
> |
simnfo[0].getConfiguration()->destroyArrays(); |
483 |
> |
simnfo[1].getConfiguration()->destroyArrays(); |
484 |
|
|
485 |
|
// create the real Atom arrays |
486 |
|
|
500 |
|
nAtoms += waterNatoms; |
501 |
|
} |
502 |
|
|
503 |
+ |
theConfig = simnfo[2].getConfiguration(); |
504 |
+ |
theConfig->createArrays( nAtoms ); |
505 |
+ |
simnfo[2].atoms = new Atom*[nAtoms]; |
506 |
+ |
atoms = simnfo[2].atoms; |
507 |
+ |
simnfo[2].n_atoms = nAtoms; |
508 |
|
|
447 |
– |
Atom::createArrays( nAtoms ); |
448 |
– |
atoms = new Atom*[nAtoms]; |
449 |
– |
|
450 |
– |
|
509 |
|
// initialize lipid positions |
510 |
|
|
511 |
|
molIndex = 0; |
512 |
|
for(i=0; i<nLipids; i++ ){ |
513 |
|
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
514 |
< |
molStart[molIndex] ); |
514 |
> |
molStart[molIndex], theConfig ); |
515 |
|
molIndex++; |
516 |
|
} |
517 |
|
|
518 |
|
// initialize the water positions |
519 |
|
|
520 |
|
for(i=0; i<newWaters; i++){ |
521 |
< |
|
521 |
> |
|
522 |
|
if( isActive[i] ){ |
523 |
< |
|
523 |
> |
|
524 |
|
getRandomRot( waterSites[i].rot ); |
525 |
|
waterLocate->placeMol( waterSites[i].pos, waterSites[i].rot, atoms, |
526 |
< |
molStart[molIndex] ); |
526 |
> |
molStart[molIndex], theConfig ); |
527 |
|
molIndex++; |
528 |
|
} |
529 |
|
} |
530 |
|
|
531 |
|
// set up the SimInfo object |
532 |
|
|
533 |
+ |
double Hmat[3][3]; |
534 |
+ |
|
535 |
+ |
Hmat[0][0] = box_x; |
536 |
+ |
Hmat[0][1] = 0.0; |
537 |
+ |
Hmat[0][2] = 0.0; |
538 |
+ |
|
539 |
+ |
Hmat[1][0] = 0.0; |
540 |
+ |
Hmat[1][1] = box_y; |
541 |
+ |
Hmat[1][2] = 0.0; |
542 |
+ |
|
543 |
+ |
Hmat[2][0] = 0.0; |
544 |
+ |
Hmat[2][1] = 0.0; |
545 |
+ |
Hmat[2][2] = box_z; |
546 |
+ |
|
547 |
+ |
|
548 |
|
bsInfo.boxX = box_x; |
549 |
|
bsInfo.boxY = box_y; |
550 |
|
bsInfo.boxZ = box_z; |
551 |
|
|
552 |
< |
double boxVector[3]; |
480 |
< |
|
481 |
< |
boxVector[0] = bsInfo.boxX; |
482 |
< |
boxVector[1] = bsInfo.boxY; |
483 |
< |
boxVector[2] = bsInfo.boxZ; |
484 |
< |
simnfo->setBox( boxVector ); |
552 |
> |
simnfo[2].setBoxM( Hmat ); |
553 |
|
|
554 |
< |
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
555 |
< |
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
554 |
> |
sprintf( simnfo[2].sampleName, "%s.dump", bsInfo.outPrefix ); |
555 |
> |
sprintf( simnfo[2].finalName, "%s.init", bsInfo.outPrefix ); |
556 |
|
|
489 |
– |
simnfo->atoms = atoms; |
490 |
– |
|
557 |
|
// set up the writer and write out |
558 |
|
|
559 |
< |
writer = new DumpWriter( simnfo ); |
559 |
> |
writer = new DumpWriter( &simnfo[2] ); |
560 |
|
writer->writeFinal( 0.0 ); |
561 |
< |
|
561 |
> |
|
562 |
|
// clean up the memory |
563 |
|
|
564 |
< |
// if( molMap != NULL ) delete[] molMap; |
565 |
< |
// if( cardDeck != NULL ) delete[] cardDeck; |
566 |
< |
// if( locate != NULL ){ |
567 |
< |
// for(i=0; i<bsInfo.nComponents; i++){ |
568 |
< |
// delete locate[i]; |
569 |
< |
// } |
570 |
< |
// delete[] locate; |
571 |
< |
// } |
572 |
< |
// if( atoms != NULL ){ |
573 |
< |
// for(i=0; i<nAtoms; i++){ |
574 |
< |
// delete atoms[i]; |
575 |
< |
// } |
576 |
< |
// Atom::destroyArrays(); |
577 |
< |
// delete[] atoms; |
578 |
< |
// } |
579 |
< |
// if( molSeq != NULL ) delete[] molSeq; |
580 |
< |
// if( simnfo != NULL ) delete simnfo; |
581 |
< |
// if( writer != NULL ) delete writer; |
564 |
> |
// if( molMap != NULL ) delete[] molMap; |
565 |
> |
// if( cardDeck != NULL ) delete[] cardDeck; |
566 |
> |
// if( locate != NULL ){ |
567 |
> |
// for(i=0; i<bsInfo.nComponents; i++){ |
568 |
> |
// delete locate[i]; |
569 |
> |
// } |
570 |
> |
// delete[] locate; |
571 |
> |
// } |
572 |
> |
// if( atoms != NULL ){ |
573 |
> |
// for(i=0; i<nAtoms; i++){ |
574 |
> |
// delete atoms[i]; |
575 |
> |
// } |
576 |
> |
// Atom::destroyArrays(); |
577 |
> |
// delete[] atoms; |
578 |
> |
// } |
579 |
> |
// if( molSeq != NULL ) delete[] molSeq; |
580 |
> |
// if( simnfo != NULL ) delete simnfo; |
581 |
> |
// if( writer != NULL ) delete writer; |
582 |
|
|
583 |
|
return 1; |
584 |
|
} |
585 |
|
|
586 |
< |
|
586 |
> |
int buildLatticeBilayer(int isHexLattice, |
587 |
> |
double hexSpacing, |
588 |
> |
double aLat, |
589 |
> |
double bLat, |
590 |
> |
int targetNlipid, |
591 |
> |
double targetWaterLipidRatio, |
592 |
> |
double leafSpacing){ |
593 |
|
|
594 |
< |
int Old_buildRandomBilayer( void ){ |
594 |
> |
typedef struct{ |
595 |
> |
double rot[3][3]; |
596 |
> |
double pos[3]; |
597 |
> |
} coord; |
598 |
|
|
599 |
< |
int i,j,k; |
600 |
< |
int nAtoms, atomIndex, molIndex, molID; |
526 |
< |
int* molSeq; |
527 |
< |
int* molMap; |
528 |
< |
int* molStart; |
529 |
< |
int* cardDeck; |
530 |
< |
int deckSize; |
531 |
< |
int rSite, rCard; |
532 |
< |
double cell; |
533 |
< |
int nCells, nSites, siteIndex; |
534 |
< |
double rot[3][3]; |
535 |
< |
double pos[3]; |
536 |
< |
|
537 |
< |
Atom** atoms; |
538 |
< |
SimInfo* simnfo; |
539 |
< |
DumpWriter* writer; |
540 |
< |
MoLocator** locate; |
541 |
< |
|
542 |
< |
// initialize functions and variables |
599 |
> |
const double waterRho = 0.0334; // number density per cubic angstrom |
600 |
> |
const double waterVol = 4.0 / waterRho; // volume occupied by 4 waters |
601 |
|
|
602 |
< |
srand48( RAND_SEED ); |
545 |
< |
molSeq = NULL; |
546 |
< |
molStart = NULL; |
547 |
< |
molMap = NULL; |
548 |
< |
cardDeck = NULL; |
549 |
< |
atoms = NULL; |
550 |
< |
locate = NULL; |
551 |
< |
simnfo = NULL; |
552 |
< |
writer = NULL; |
602 |
> |
double waterCell[3]; |
603 |
|
|
604 |
< |
// calculate the number of cells in the fcc box |
604 |
> |
double *posX, *posY, *posZ; |
605 |
> |
double pos[3], posA[3], posB[3]; |
606 |
|
|
607 |
< |
nCells = 0; |
557 |
< |
nSites = 0; |
558 |
< |
while( nSites < bsInfo.totNmol ){ |
559 |
< |
nCells++; |
560 |
< |
nSites = 4.0 * pow( (double)nCells, 3.0 ); |
561 |
< |
} |
607 |
> |
const double waterFudge = 5.0; |
608 |
|
|
609 |
< |
|
610 |
< |
// create the molMap and cardDeck arrays |
609 |
> |
int i,j,k,l; |
610 |
> |
int nAtoms, atomIndex, molIndex, molID; |
611 |
> |
int* molSeq; |
612 |
> |
int* molMap; |
613 |
> |
int* molStart; |
614 |
> |
int testTot, done; |
615 |
> |
int nCells, nCellsX, nCellsY, nCellsZ; |
616 |
> |
int nx, ny; |
617 |
> |
double boxX, boxY, boxZ; |
618 |
> |
double unitVector[3]; |
619 |
> |
int which; |
620 |
> |
int targetWaters; |
621 |
|
|
566 |
– |
molMap = new int[nSites]; |
567 |
– |
cardDeck = new int[nSites]; |
622 |
|
|
569 |
– |
for(i=0; i<nSites; i++){ |
570 |
– |
molMap[i] = -1; |
571 |
– |
cardDeck[i] = i; |
572 |
– |
} |
623 |
|
|
624 |
< |
// randomly place the molecules on the sites |
575 |
< |
|
576 |
< |
deckSize = nSites; |
577 |
< |
for(i=0; i<bsInfo.totNmol; i++){ |
578 |
< |
rCard = (int)( deckSize * drand48() ); |
579 |
< |
rSite = cardDeck[rCard]; |
580 |
< |
molMap[rSite] = i; |
624 |
> |
coord testSite; |
625 |
|
|
626 |
< |
// book keep the card deck; |
627 |
< |
|
628 |
< |
deckSize--; |
629 |
< |
cardDeck[rCard] = cardDeck[deckSize]; |
630 |
< |
} |
631 |
< |
|
632 |
< |
|
633 |
< |
// create the MoLocator and Atom arrays |
634 |
< |
|
635 |
< |
nAtoms = 0; |
636 |
< |
molIndex = 0; |
637 |
< |
locate = new MoLocator*[bsInfo.nComponents]; |
638 |
< |
molSeq = new int[bsInfo.totNmol]; |
639 |
< |
molStart = new int[bsInfo.totNmol]; |
626 |
> |
Atom** atoms; |
627 |
> |
SimInfo* simnfo; |
628 |
> |
SimState* theConfig; |
629 |
> |
DumpWriter* writer; |
630 |
> |
|
631 |
> |
MoleculeStamp* lipidStamp; |
632 |
> |
MoleculeStamp* waterStamp; |
633 |
> |
MoLocator *lipidLocate; |
634 |
> |
MoLocator *waterLocate; |
635 |
> |
int foundLipid, foundWater; |
636 |
> |
int nLipids, lipidNatoms, nWaters, waterNatoms; |
637 |
> |
|
638 |
> |
srand48( RAND_SEED ); |
639 |
> |
|
640 |
> |
// create the simInfo objects |
641 |
> |
|
642 |
> |
simnfo = new SimInfo; |
643 |
> |
|
644 |
> |
// set the the lipidStamp |
645 |
> |
|
646 |
> |
foundLipid = 0; |
647 |
> |
foundWater = 0; |
648 |
|
for(i=0; i<bsInfo.nComponents; i++){ |
649 |
< |
locate[i] = new MoLocator( bsInfo.compStamps[i] ); |
650 |
< |
for(j=0; j<bsInfo.componentsNmol[i]; j++){ |
651 |
< |
molSeq[molIndex] = i; |
652 |
< |
molStart[molIndex] = nAtoms; |
653 |
< |
molIndex++; |
654 |
< |
nAtoms += bsInfo.compStamps[i]->getNAtoms(); |
649 |
> |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ |
650 |
> |
|
651 |
> |
foundLipid = 1; |
652 |
> |
lipidStamp = bsInfo.compStamps[i]; |
653 |
> |
nLipids = bsInfo.componentsNmol[i]; |
654 |
> |
lipidNatoms = lipidStamp->getNAtoms(); |
655 |
|
} |
656 |
+ |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ |
657 |
+ |
|
658 |
+ |
foundWater = 1; |
659 |
+ |
|
660 |
+ |
waterStamp = bsInfo.compStamps[i]; |
661 |
+ |
nWaters = bsInfo.componentsNmol[i]; |
662 |
+ |
waterNatoms = waterStamp->getNAtoms(); |
663 |
+ |
} |
664 |
|
} |
665 |
+ |
if( !foundLipid ){ |
666 |
+ |
sprintf(painCave.errMsg, |
667 |
+ |
"Could not find lipid \"%s\" in the bass file.\n", |
668 |
+ |
bsInfo.lipidName ); |
669 |
+ |
painCave.isFatal = 1; |
670 |
+ |
simError(); |
671 |
+ |
} |
672 |
+ |
if( !foundWater ){ |
673 |
+ |
sprintf(painCave.errMsg, |
674 |
+ |
"Could not find solvent \"%s\" in the bass file.\n", |
675 |
+ |
bsInfo.waterName ); |
676 |
+ |
painCave.isFatal = 1; |
677 |
+ |
simError(); |
678 |
+ |
} |
679 |
|
|
680 |
< |
Atom::createArrays( nAtoms ); |
607 |
< |
atoms = new Atom*[nAtoms]; |
680 |
> |
//create the Molocator arrays |
681 |
|
|
682 |
+ |
lipidLocate = new MoLocator( lipidStamp ); |
683 |
+ |
waterLocate = new MoLocator( waterStamp ); |
684 |
+ |
|
685 |
+ |
|
686 |
+ |
// set up the bilayer leaves |
687 |
|
|
688 |
< |
// place the molecules at each FCC site |
689 |
< |
|
690 |
< |
cell = 5.0; |
691 |
< |
for(i=0; i<bsInfo.nComponents; i++){ |
614 |
< |
if(cell < locate[i]->getMaxLength() ) cell = locate[i]->getMaxLength(); |
615 |
< |
} |
616 |
< |
cell *= 1.2; // add a little buffer |
688 |
> |
if (isHexLattice) { |
689 |
> |
aLat = sqrt(3.0)*hexSpacing; |
690 |
> |
bLat = hexSpacing; |
691 |
> |
} |
692 |
|
|
693 |
< |
cell *= M_SQRT2; |
693 |
> |
nCells = (int) sqrt( (double)targetNlipid * bLat / (4.0 * aLat) ); |
694 |
|
|
695 |
< |
siteIndex = 0; |
696 |
< |
for(i=0; i<nCells; i++){ |
622 |
< |
for(j=0; j<nCells; j++){ |
623 |
< |
for(k=0; k<nCells; k++){ |
624 |
< |
|
625 |
< |
if( molMap[siteIndex] >= 0 ){ |
626 |
< |
pos[0] = i * cell; |
627 |
< |
pos[1] = j * cell; |
628 |
< |
pos[2] = k * cell; |
629 |
< |
|
630 |
< |
getRandomRot( rot ); |
631 |
< |
molID = molSeq[molMap[siteIndex]]; |
632 |
< |
atomIndex = molStart[ molMap[siteIndex] ]; |
633 |
< |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
634 |
< |
} |
635 |
< |
siteIndex++; |
695 |
> |
nx = nCells; |
696 |
> |
ny = (int) ((double)nCells * aLat / bLat); |
697 |
|
|
698 |
< |
if( molMap[siteIndex] >= 0 ){ |
699 |
< |
pos[0] = i * cell + (0.5 * cell); |
639 |
< |
pos[1] = j * cell; |
640 |
< |
pos[2] = k * cell + (0.5 * cell); |
698 |
> |
boxX = nx * aLat; |
699 |
> |
boxY = ny * bLat; |
700 |
|
|
701 |
< |
getRandomRot( rot ); |
702 |
< |
molID = molSeq[molMap[siteIndex]]; |
644 |
< |
atomIndex = molStart[ molMap[siteIndex] ]; |
645 |
< |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
646 |
< |
} |
647 |
< |
siteIndex++; |
701 |
> |
nLipids = 4 * nx * ny; |
702 |
> |
coord* lipidSites = new coord[nLipids]; |
703 |
|
|
704 |
< |
if( molMap[siteIndex] >= 0 ){ |
705 |
< |
pos[0] = i * cell + (0.5 * cell); |
651 |
< |
pos[1] = j * cell + (0.5 * cell); |
652 |
< |
pos[2] = k * cell; |
653 |
< |
|
654 |
< |
getRandomRot( rot ); |
655 |
< |
molID = molSeq[molMap[siteIndex]]; |
656 |
< |
atomIndex = molStart[ molMap[siteIndex] ]; |
657 |
< |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
658 |
< |
} |
659 |
< |
siteIndex++; |
704 |
> |
unitVector[0] = 0.0; |
705 |
> |
unitVector[1] = 0.0; |
706 |
|
|
707 |
< |
if( molMap[siteIndex] >= 0 ){ |
662 |
< |
pos[0] = i * cell; |
663 |
< |
pos[1] = j * cell + (0.5 * cell); |
664 |
< |
pos[2] = k * cell + (0.5 * cell); |
707 |
> |
which = 0; |
708 |
|
|
709 |
< |
getRandomRot( rot ); |
710 |
< |
molID = molSeq[molMap[siteIndex]]; |
711 |
< |
atomIndex = molStart[ molMap[siteIndex] ]; |
712 |
< |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
709 |
> |
for (i = 0; i < nx; i++) { |
710 |
> |
for (j = 0; j < ny; j++ ) { |
711 |
> |
for (k = 0; k < 2; k++) { |
712 |
> |
|
713 |
> |
lipidSites[which].pos[0] = (double)i * aLat; |
714 |
> |
lipidSites[which].pos[1] = (double)j * bLat; |
715 |
> |
lipidSites[which].pos[2] = ((double)k - 0.5) * (leafSpacing / 2.0); |
716 |
> |
|
717 |
> |
unitVector[2] = 2.0 * (double)k - 1.0; |
718 |
> |
|
719 |
> |
getUnitRot( unitVector, lipidSites[which].rot ); |
720 |
> |
|
721 |
> |
which++; |
722 |
> |
|
723 |
> |
lipidSites[which].pos[0] = aLat * ((double)i + 0.5); |
724 |
> |
lipidSites[which].pos[1] = bLat * ((double)j + 0.5); |
725 |
> |
lipidSites[which].pos[2] = ((double)k - 0.5) * (leafSpacing / 2.0); |
726 |
> |
|
727 |
> |
unitVector[2] = 2.0 * (double)k - 1.0; |
728 |
> |
|
729 |
> |
getUnitRot( unitVector, lipidSites[which].rot ); |
730 |
> |
|
731 |
> |
which++; |
732 |
> |
} |
733 |
> |
} |
734 |
> |
} |
735 |
> |
|
736 |
> |
targetWaters = targetWaterLipidRatio * nLipids; |
737 |
> |
|
738 |
> |
// guess the size of the water box |
739 |
> |
|
740 |
> |
|
741 |
> |
|
742 |
> |
nCellsX = (int)ceil(boxX / pow(waterVol, ( 1.0 / 3.0 )) ); |
743 |
> |
nCellsY = (int)ceil(boxY / pow(waterVol, ( 1.0 / 3.0 )) ); |
744 |
> |
|
745 |
> |
done = 0; |
746 |
> |
nCellsZ = 0; |
747 |
> |
while( !done ){ |
748 |
> |
|
749 |
> |
nCellsZ++; |
750 |
> |
testTot = 4 * nCellsX * nCellsY * nCellsZ; |
751 |
> |
|
752 |
> |
if( testTot >= targetWaters ) done = 1; |
753 |
> |
} |
754 |
> |
|
755 |
> |
nWaters = nCellsX * nCellsY * nCellsZ * 4; |
756 |
> |
|
757 |
> |
coord* waterSites = new coord[nWaters]; |
758 |
> |
|
759 |
> |
waterCell[0] = boxX / nCellsX; |
760 |
> |
waterCell[1] = boxY / nCellsY; |
761 |
> |
waterCell[2] = 4.0 / (waterRho * waterCell[0] * waterCell[1]); |
762 |
> |
|
763 |
> |
Lattice *myORTHO; |
764 |
> |
myORTHO = new Lattice( ORTHORHOMBIC_LATTICE_TYPE, waterCell); |
765 |
> |
myORTHO->setStartZ( leafSpacing / 2.0 + waterFudge); |
766 |
> |
|
767 |
> |
boxZ = waterCell[2] * nCellsZ; |
768 |
> |
|
769 |
> |
// create an fcc lattice in the water box. |
770 |
> |
|
771 |
> |
which = 0; |
772 |
> |
for( i=0; i < nCellsX; i++ ){ |
773 |
> |
for( j=0; j < nCellsY; j++ ){ |
774 |
> |
for( k=0; k < nCellsZ; k++ ){ |
775 |
> |
|
776 |
> |
myORTHO->getLatticePoints(&posX, &posY, &posZ, i, j, k); |
777 |
> |
for(l=0; l<4; l++){ |
778 |
> |
waterSites[which].pos[0] = posX[l]; |
779 |
> |
waterSites[which].pos[1] = posY[l]; |
780 |
> |
waterSites[which].pos[2] = posZ[l]; |
781 |
> |
which++; |
782 |
|
} |
671 |
– |
siteIndex++; |
783 |
|
} |
784 |
|
} |
785 |
+ |
} |
786 |
+ |
|
787 |
+ |
// create the real Atom arrays |
788 |
+ |
|
789 |
+ |
nAtoms = 0; |
790 |
+ |
molIndex = 0; |
791 |
+ |
molStart = new int[nLipids + nWaters]; |
792 |
+ |
|
793 |
+ |
for(j=0; j<nLipids; j++){ |
794 |
+ |
molStart[molIndex] = nAtoms; |
795 |
+ |
molIndex++; |
796 |
+ |
nAtoms += lipidNatoms; |
797 |
|
} |
798 |
|
|
799 |
+ |
for(j=0; j<nWaters; j++){ |
800 |
+ |
molStart[molIndex] = nAtoms; |
801 |
+ |
molIndex++; |
802 |
+ |
nAtoms += waterNatoms; |
803 |
+ |
} |
804 |
+ |
|
805 |
+ |
theConfig = simnfo->getConfiguration(); |
806 |
+ |
theConfig->createArrays( nAtoms ); |
807 |
+ |
simnfo->atoms = new Atom*[nAtoms]; |
808 |
+ |
atoms = simnfo->atoms; |
809 |
+ |
|
810 |
+ |
// initialize lipid positions |
811 |
+ |
|
812 |
+ |
molIndex = 0; |
813 |
+ |
for(i=0; i<nLipids; i++ ){ |
814 |
+ |
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
815 |
+ |
molStart[molIndex], theConfig ); |
816 |
+ |
molIndex++; |
817 |
+ |
} |
818 |
+ |
|
819 |
+ |
// initialize the water positions |
820 |
+ |
|
821 |
+ |
for(i=0; i<nWaters; i++){ |
822 |
+ |
|
823 |
+ |
getRandomRot( waterSites[i].rot ); |
824 |
+ |
waterLocate->placeMol( waterSites[i].pos, waterSites[i].rot, atoms, |
825 |
+ |
molStart[molIndex], theConfig ); |
826 |
+ |
molIndex++; |
827 |
+ |
} |
828 |
+ |
|
829 |
|
// set up the SimInfo object |
830 |
|
|
831 |
< |
bsInfo.boxX = nCells * cell; |
832 |
< |
bsInfo.boxY = nCells * cell; |
833 |
< |
bsInfo.boxZ = nCells * cell; |
831 |
> |
double Hmat[3][3]; |
832 |
> |
|
833 |
> |
Hmat[0][0] = boxX; |
834 |
> |
Hmat[0][1] = 0.0; |
835 |
> |
Hmat[0][2] = 0.0; |
836 |
> |
|
837 |
> |
Hmat[1][0] = 0.0; |
838 |
> |
Hmat[1][1] = boxY; |
839 |
> |
Hmat[1][2] = 0.0; |
840 |
> |
|
841 |
> |
Hmat[2][0] = 0.0; |
842 |
> |
Hmat[2][1] = 0.0; |
843 |
> |
Hmat[2][2] = boxZ; |
844 |
|
|
682 |
– |
double boxVector[3]; |
683 |
– |
simnfo = new SimInfo(); |
684 |
– |
simnfo->n_atoms = nAtoms; |
685 |
– |
boxVector[0] = bsInfo.boxX; |
686 |
– |
boxVector[1] = bsInfo.boxY; |
687 |
– |
boxVector[2] = bsInfo.boxZ; |
688 |
– |
simnfo->setBox( boxVector ); |
845 |
|
|
846 |
+ |
bsInfo.boxX = boxX; |
847 |
+ |
bsInfo.boxY = boxY; |
848 |
+ |
bsInfo.boxZ = boxZ; |
849 |
+ |
|
850 |
+ |
simnfo->setBoxM( Hmat ); |
851 |
+ |
|
852 |
|
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
853 |
|
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
854 |
|
|
693 |
– |
simnfo->atoms = atoms; |
694 |
– |
|
855 |
|
// set up the writer and write out |
856 |
|
|
857 |
|
writer = new DumpWriter( simnfo ); |
858 |
< |
writer->writeFinal(0.0); |
699 |
< |
|
700 |
< |
// clean up the memory |
701 |
< |
|
702 |
< |
if( molMap != NULL ) delete[] molMap; |
703 |
< |
if( cardDeck != NULL ) delete[] cardDeck; |
704 |
< |
if( locate != NULL ){ |
705 |
< |
for(i=0; i<bsInfo.nComponents; i++){ |
706 |
< |
delete locate[i]; |
707 |
< |
} |
708 |
< |
delete[] locate; |
709 |
< |
} |
710 |
< |
if( atoms != NULL ){ |
711 |
< |
for(i=0; i<nAtoms; i++){ |
712 |
< |
delete atoms[i]; |
713 |
< |
} |
714 |
< |
Atom::destroyArrays(); |
715 |
< |
delete[] atoms; |
716 |
< |
} |
717 |
< |
if( molSeq != NULL ) delete[] molSeq; |
718 |
< |
if( simnfo != NULL ) delete simnfo; |
719 |
< |
if( writer != NULL ) delete writer; |
858 |
> |
writer->writeFinal( 0.0 ); |
859 |
|
|
860 |
|
return 1; |
861 |
|
} |
874 |
|
|
875 |
|
theta = acos( cosTheta ); |
876 |
|
|
877 |
+ |
getEulerRot( theta, phi, psi, rot ); |
878 |
+ |
} |
879 |
+ |
|
880 |
+ |
|
881 |
+ |
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ){ |
882 |
+ |
|
883 |
|
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
884 |
|
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
885 |
|
rot[0][2] = sin(theta) * sin(psi); |
892 |
|
rot[2][1] = -cos(phi) * sin(theta); |
893 |
|
rot[2][2] = cos(theta); |
894 |
|
} |
895 |
+ |
|
896 |
+ |
|
897 |
+ |
void getUnitRot( double u[3], double rot[3][3] ){ |
898 |
+ |
|
899 |
+ |
double theta, phi, psi; |
900 |
+ |
|
901 |
+ |
theta = acos(u[2]); |
902 |
+ |
phi = atan(u[1] / u[0]); |
903 |
+ |
psi = 0.0; |
904 |
+ |
|
905 |
+ |
getEulerRot( theta, phi, psi, rot ); |
906 |
+ |
} |
907 |
|
|
908 |
|
|
909 |
|
|
910 |
|
void buildMap( double &x, double &y, double &z, |
911 |
< |
double boxX, double boxY, double boxZ ){ |
911 |
> |
double boxX, double boxY, double boxZ ){ |
912 |
|
|
913 |
|
if(x < 0) x -= boxX * (double)( (int)( (x / boxX) - 0.5 ) ); |
914 |
|
else x -= boxX * (double)( (int)( (x / boxX ) + 0.5)); |