| 1 |
+ |
|
| 2 |
|
#include <iostream> |
| 3 |
+ |
#include <vector> |
| 4 |
+ |
#include <algorithm> |
| 5 |
|
|
| 6 |
|
#include <cstdlib> |
| 7 |
|
#include <cstring> |
| 8 |
|
#include <cmath> |
| 9 |
|
|
| 10 |
+ |
|
| 11 |
|
#include "simError.h" |
| 12 |
|
#include "SimInfo.hpp" |
| 13 |
|
#include "ReadWrite.hpp" |
| 18 |
|
|
| 19 |
|
#include "latticeBuilder.hpp" |
| 20 |
|
|
| 21 |
+ |
class SortCond{ |
| 22 |
+ |
|
| 23 |
+ |
public: |
| 24 |
+ |
bool operator()(const pair<int, double>& p1, const pair<int, double>& p2){ |
| 25 |
+ |
return p1.second < p2.second; |
| 26 |
+ |
} |
| 27 |
+ |
|
| 28 |
+ |
|
| 29 |
+ |
}; |
| 30 |
+ |
|
| 31 |
+ |
|
| 32 |
|
void buildMap( double &x, double &y, double &z, |
| 33 |
|
double boxX, double boxY, double boxZ ); |
| 34 |
|
|
| 35 |
|
int buildRandomBilayer( void ); |
| 36 |
+ |
int buildLatticeBilayer( int isHexLattice, |
| 37 |
+ |
double hexSpacing, |
| 38 |
+ |
double aLat, |
| 39 |
+ |
double bLat, |
| 40 |
+ |
int targetNlipid, |
| 41 |
+ |
double targetWaterLipidRatio, |
| 42 |
+ |
double leafSpacing); |
| 43 |
|
|
| 44 |
|
void getRandomRot( double rot[3][3] ); |
| 45 |
+ |
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ); |
| 46 |
+ |
void getUnitRot( double unit[3], double rot[3][3] ); |
| 47 |
|
|
| 48 |
|
int buildBilayer( int isRandom ){ |
| 49 |
|
|
| 51 |
|
return buildRandomBilayer(); |
| 52 |
|
} |
| 53 |
|
else{ |
| 54 |
< |
sprintf( painCave.errMsg, |
| 55 |
< |
"Cannot currently create a non-random bilayer.\n" ); |
| 56 |
< |
painCave.isFatal = 1; |
| 57 |
< |
simError(); |
| 34 |
< |
return 0; |
| 54 |
> |
|
| 55 |
> |
|
| 56 |
> |
|
| 57 |
> |
return buildLatticeBilayer(); |
| 58 |
|
} |
| 59 |
|
} |
| 60 |
|
|
| 258 |
|
|
| 259 |
|
// find the best box size for the sim |
| 260 |
|
|
| 261 |
+ |
int nCellsX, nCellsY, nCellsZ; |
| 262 |
+ |
|
| 263 |
+ |
const double boxTargetX = 66.22752; |
| 264 |
+ |
const double boxTargetY = 60.53088; |
| 265 |
+ |
|
| 266 |
+ |
nCellsX = (int)ceil(boxTargetX / waterCell); |
| 267 |
+ |
nCellsY = (int)ceil(boxTargetY / waterCell); |
| 268 |
+ |
|
| 269 |
|
int testTot; |
| 270 |
|
int done = 0; |
| 271 |
< |
ndx = 0; |
| 271 |
> |
nCellsZ = 0; |
| 272 |
|
while( !done ){ |
| 273 |
|
|
| 274 |
< |
ndx++; |
| 275 |
< |
testTot = 4 * ndx * ndx * ndx; |
| 274 |
> |
nCellsZ++; |
| 275 |
> |
testTot = 4 * nCellsX * nCellsY * nCellsZ; |
| 276 |
|
|
| 277 |
|
if( testTot >= targetWaters ) done = 1; |
| 278 |
|
} |
| 279 |
|
|
| 249 |
– |
nCells = ndx; |
| 250 |
– |
|
| 251 |
– |
|
| 280 |
|
// create the new water box to the new specifications |
| 281 |
|
|
| 282 |
< |
int newWaters = nCells * nCells * nCells * 4; |
| 282 |
> |
int newWaters = nCellsX * nCellsY * nCellsZ * 4; |
| 283 |
|
|
| 284 |
|
delete[] waterX; |
| 285 |
|
delete[] waterY; |
| 287 |
|
|
| 288 |
|
coord* waterSites = new coord[newWaters]; |
| 289 |
|
|
| 290 |
< |
double box_x = waterCell * nCells; |
| 291 |
< |
double box_y = waterCell * nCells; |
| 292 |
< |
double box_z = waterCell * nCells; |
| 290 |
> |
double box_x = waterCell * nCellsX; |
| 291 |
> |
double box_y = waterCell * nCellsY; |
| 292 |
> |
double box_z = waterCell * nCellsZ; |
| 293 |
|
|
| 294 |
|
// create an fcc lattice in the water box. |
| 295 |
|
|
| 296 |
|
ndx = 0; |
| 297 |
< |
for( i=0; i < nCells; i++ ){ |
| 298 |
< |
for( j=0; j < nCells; j++ ){ |
| 299 |
< |
for( k=0; k < nCells; k++ ){ |
| 297 |
> |
for( i=0; i < nCellsX; i++ ){ |
| 298 |
> |
for( j=0; j < nCellsY; j++ ){ |
| 299 |
> |
for( k=0; k < nCellsZ; k++ ){ |
| 300 |
|
|
| 301 |
|
myFCC.getLatticePoints(&posX, &posY, &posZ, i, j, k); |
| 302 |
|
for(l=0; l<4; l++){ |
| 383 |
|
} |
| 384 |
|
} |
| 385 |
|
|
| 386 |
+ |
|
| 387 |
+ |
// zSort of the lipid positions |
| 388 |
+ |
|
| 389 |
+ |
|
| 390 |
+ |
vector< pair<int,double> >zSortArray; |
| 391 |
+ |
for(i=0;i<nLipids;i++) |
| 392 |
+ |
zSortArray.push_back( make_pair(i, lipidSites[i].pos[2]) ); |
| 393 |
+ |
|
| 394 |
+ |
sort(zSortArray.begin(),zSortArray.end(),SortCond()); |
| 395 |
+ |
|
| 396 |
+ |
ofstream outFile( "./zipper.bass", ios::app); |
| 397 |
+ |
|
| 398 |
+ |
for(i=0; i<nLipids; i++){ |
| 399 |
+ |
outFile << "zConstraint[" << i << "]{\n" |
| 400 |
+ |
<< " molIndex = " << zSortArray[i].first << ";\n" |
| 401 |
+ |
<< " zPos = "; |
| 402 |
+ |
|
| 403 |
+ |
if(i<32) outFile << "60.0;\n"; |
| 404 |
+ |
else outFile << "100.0;\n"; |
| 405 |
+ |
|
| 406 |
+ |
outFile << " kRatio = 0.5;\n" |
| 407 |
+ |
<< "}\n"; |
| 408 |
+ |
} |
| 409 |
+ |
|
| 410 |
+ |
outFile.close(); |
| 411 |
+ |
|
| 412 |
+ |
|
| 413 |
|
// cut out the waters that overlap with the lipids. |
| 414 |
|
|
| 415 |
|
|
| 583 |
|
return 1; |
| 584 |
|
} |
| 585 |
|
|
| 586 |
+ |
int buildLatticeBilayer(int isHexLattice, |
| 587 |
+ |
double hexSpacing, |
| 588 |
+ |
double aLat, |
| 589 |
+ |
double bLat, |
| 590 |
+ |
int targetNlipid, |
| 591 |
+ |
double targetWaterLipidRatio, |
| 592 |
+ |
double leafSpacing){ |
| 593 |
+ |
|
| 594 |
+ |
typedef struct{ |
| 595 |
+ |
double rot[3][3]; |
| 596 |
+ |
double pos[3]; |
| 597 |
+ |
} coord; |
| 598 |
+ |
|
| 599 |
+ |
const double waterRho = 0.0334; // number density per cubic angstrom |
| 600 |
+ |
const double waterVol = 4.0 / waterRho; // volume occupied by 4 waters |
| 601 |
+ |
|
| 602 |
+ |
double waterCell[3]; |
| 603 |
+ |
|
| 604 |
+ |
double *posX, *posY, *posZ; |
| 605 |
+ |
double pos[3], posA[3], posB[3]; |
| 606 |
+ |
|
| 607 |
+ |
const double waterFudge = 5.0; |
| 608 |
+ |
|
| 609 |
+ |
int i,j,k,l; |
| 610 |
+ |
int nAtoms, atomIndex, molIndex, molID; |
| 611 |
+ |
int* molSeq; |
| 612 |
+ |
int* molMap; |
| 613 |
+ |
int* molStart; |
| 614 |
+ |
int testTot, done; |
| 615 |
+ |
int nCells, nCellsX, nCellsY, nCellsZ; |
| 616 |
+ |
int nx, ny; |
| 617 |
+ |
double boxX, boxY, boxZ; |
| 618 |
+ |
double unitVector[3]; |
| 619 |
+ |
int which; |
| 620 |
+ |
int targetWaters; |
| 621 |
+ |
|
| 622 |
+ |
|
| 623 |
+ |
|
| 624 |
+ |
coord testSite; |
| 625 |
+ |
|
| 626 |
+ |
Atom** atoms; |
| 627 |
+ |
SimInfo* simnfo; |
| 628 |
+ |
SimState* theConfig; |
| 629 |
+ |
DumpWriter* writer; |
| 630 |
+ |
|
| 631 |
+ |
MoleculeStamp* lipidStamp; |
| 632 |
+ |
MoleculeStamp* waterStamp; |
| 633 |
+ |
MoLocator *lipidLocate; |
| 634 |
+ |
MoLocator *waterLocate; |
| 635 |
+ |
int foundLipid, foundWater; |
| 636 |
+ |
int nLipids, lipidNatoms, nWaters, waterNatoms; |
| 637 |
+ |
|
| 638 |
+ |
srand48( RAND_SEED ); |
| 639 |
+ |
|
| 640 |
+ |
// create the simInfo objects |
| 641 |
+ |
|
| 642 |
+ |
simnfo = new SimInfo; |
| 643 |
+ |
|
| 644 |
+ |
// set the the lipidStamp |
| 645 |
+ |
|
| 646 |
+ |
foundLipid = 0; |
| 647 |
+ |
foundWater = 0; |
| 648 |
+ |
for(i=0; i<bsInfo.nComponents; i++){ |
| 649 |
+ |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ |
| 650 |
+ |
|
| 651 |
+ |
foundLipid = 1; |
| 652 |
+ |
lipidStamp = bsInfo.compStamps[i]; |
| 653 |
+ |
nLipids = bsInfo.componentsNmol[i]; |
| 654 |
+ |
lipidNatoms = lipidStamp->getNAtoms(); |
| 655 |
+ |
} |
| 656 |
+ |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ |
| 657 |
+ |
|
| 658 |
+ |
foundWater = 1; |
| 659 |
+ |
|
| 660 |
+ |
waterStamp = bsInfo.compStamps[i]; |
| 661 |
+ |
nWaters = bsInfo.componentsNmol[i]; |
| 662 |
+ |
waterNatoms = waterStamp->getNAtoms(); |
| 663 |
+ |
} |
| 664 |
+ |
} |
| 665 |
+ |
if( !foundLipid ){ |
| 666 |
+ |
sprintf(painCave.errMsg, |
| 667 |
+ |
"Could not find lipid \"%s\" in the bass file.\n", |
| 668 |
+ |
bsInfo.lipidName ); |
| 669 |
+ |
painCave.isFatal = 1; |
| 670 |
+ |
simError(); |
| 671 |
+ |
} |
| 672 |
+ |
if( !foundWater ){ |
| 673 |
+ |
sprintf(painCave.errMsg, |
| 674 |
+ |
"Could not find solvent \"%s\" in the bass file.\n", |
| 675 |
+ |
bsInfo.waterName ); |
| 676 |
+ |
painCave.isFatal = 1; |
| 677 |
+ |
simError(); |
| 678 |
+ |
} |
| 679 |
+ |
|
| 680 |
+ |
//create the Molocator arrays |
| 681 |
+ |
|
| 682 |
+ |
lipidLocate = new MoLocator( lipidStamp ); |
| 683 |
+ |
waterLocate = new MoLocator( waterStamp ); |
| 684 |
+ |
|
| 685 |
+ |
|
| 686 |
+ |
// set up the bilayer leaves |
| 687 |
+ |
|
| 688 |
+ |
if (isHexLattice) { |
| 689 |
+ |
aLat = sqrt(3.0)*hexSpacing; |
| 690 |
+ |
bLat = hexSpacing; |
| 691 |
+ |
} |
| 692 |
+ |
|
| 693 |
+ |
nCells = (int) sqrt( (double)targetNlipid * bLat / (4.0 * aLat) ); |
| 694 |
+ |
|
| 695 |
+ |
nx = nCells; |
| 696 |
+ |
ny = (int) ((double)nCells * aLat / bLat); |
| 697 |
+ |
|
| 698 |
+ |
boxX = nx * aLat; |
| 699 |
+ |
boxY = ny * bLat; |
| 700 |
+ |
|
| 701 |
+ |
nLipids = 4 * nx * ny; |
| 702 |
+ |
coord* lipidSites = new coord[nLipids]; |
| 703 |
+ |
|
| 704 |
+ |
unitVector[0] = 0.0; |
| 705 |
+ |
unitVector[1] = 0.0; |
| 706 |
+ |
|
| 707 |
+ |
which = 0; |
| 708 |
+ |
|
| 709 |
+ |
for (i = 0; i < nx; i++) { |
| 710 |
+ |
for (j = 0; j < ny; j++ ) { |
| 711 |
+ |
for (k = 0; k < 2; k++) { |
| 712 |
+ |
|
| 713 |
+ |
lipidSites[which].pos[0] = (double)i * aLat; |
| 714 |
+ |
lipidSites[which].pos[1] = (double)j * bLat; |
| 715 |
+ |
lipidSites[which].pos[2] = ((double)k - 0.5) * (leafSpacing / 2.0); |
| 716 |
+ |
|
| 717 |
+ |
unitVector[2] = 2.0 * (double)k - 1.0; |
| 718 |
+ |
|
| 719 |
+ |
getUnitRot( unitVector, lipidSites[which].rot ); |
| 720 |
+ |
|
| 721 |
+ |
which++; |
| 722 |
+ |
|
| 723 |
+ |
lipidSites[which].pos[0] = aLat * ((double)i + 0.5); |
| 724 |
+ |
lipidSites[which].pos[1] = bLat * ((double)j + 0.5); |
| 725 |
+ |
lipidSites[which].pos[2] = ((double)k - 0.5) * (leafSpacing / 2.0); |
| 726 |
+ |
|
| 727 |
+ |
unitVector[2] = 2.0 * (double)k - 1.0; |
| 728 |
+ |
|
| 729 |
+ |
getUnitRot( unitVector, lipidSites[which].rot ); |
| 730 |
+ |
|
| 731 |
+ |
which++; |
| 732 |
+ |
} |
| 733 |
+ |
} |
| 734 |
+ |
} |
| 735 |
+ |
|
| 736 |
+ |
targetWaters = targetWaterLipidRatio * nLipids; |
| 737 |
+ |
|
| 738 |
+ |
// guess the size of the water box |
| 739 |
+ |
|
| 740 |
+ |
|
| 741 |
+ |
|
| 742 |
+ |
nCellsX = (int)ceil(boxX / pow(waterVol, ( 1.0 / 3.0 )) ); |
| 743 |
+ |
nCellsY = (int)ceil(boxY / pow(waterVol, ( 1.0 / 3.0 )) ); |
| 744 |
+ |
|
| 745 |
+ |
done = 0; |
| 746 |
+ |
nCellsZ = 0; |
| 747 |
+ |
while( !done ){ |
| 748 |
+ |
|
| 749 |
+ |
nCellsZ++; |
| 750 |
+ |
testTot = 4 * nCellsX * nCellsY * nCellsZ; |
| 751 |
+ |
|
| 752 |
+ |
if( testTot >= targetWaters ) done = 1; |
| 753 |
+ |
} |
| 754 |
+ |
|
| 755 |
+ |
nWaters = nCellsX * nCellsY * nCellsZ * 4; |
| 756 |
+ |
|
| 757 |
+ |
coord* waterSites = new coord[nWaters]; |
| 758 |
+ |
|
| 759 |
+ |
waterCell[0] = boxX / nCellsX; |
| 760 |
+ |
waterCell[1] = boxY / nCellsY; |
| 761 |
+ |
waterCell[2] = 4.0 / (waterRho * waterCell[0] * waterCell[1]); |
| 762 |
+ |
|
| 763 |
+ |
Lattice *myORTHO; |
| 764 |
+ |
myORTHO = new Lattice( ORTHORHOMBIC_LATTICE_TYPE, waterCell); |
| 765 |
+ |
myORTHO->setStartZ( leafSpacing / 2.0 + waterFudge); |
| 766 |
+ |
|
| 767 |
+ |
boxZ = waterCell[2] * nCellsZ; |
| 768 |
+ |
|
| 769 |
+ |
// create an fcc lattice in the water box. |
| 770 |
+ |
|
| 771 |
+ |
which = 0; |
| 772 |
+ |
for( i=0; i < nCellsX; i++ ){ |
| 773 |
+ |
for( j=0; j < nCellsY; j++ ){ |
| 774 |
+ |
for( k=0; k < nCellsZ; k++ ){ |
| 775 |
+ |
|
| 776 |
+ |
myORTHO->getLatticePoints(&posX, &posY, &posZ, i, j, k); |
| 777 |
+ |
for(l=0; l<4; l++){ |
| 778 |
+ |
waterSites[which].pos[0] = posX[l]; |
| 779 |
+ |
waterSites[which].pos[1] = posY[l]; |
| 780 |
+ |
waterSites[which].pos[2] = posZ[l]; |
| 781 |
+ |
which++; |
| 782 |
+ |
} |
| 783 |
+ |
} |
| 784 |
+ |
} |
| 785 |
+ |
} |
| 786 |
+ |
|
| 787 |
+ |
// create the real Atom arrays |
| 788 |
+ |
|
| 789 |
+ |
nAtoms = 0; |
| 790 |
+ |
molIndex = 0; |
| 791 |
+ |
molStart = new int[nLipids + nWaters]; |
| 792 |
+ |
|
| 793 |
+ |
for(j=0; j<nLipids; j++){ |
| 794 |
+ |
molStart[molIndex] = nAtoms; |
| 795 |
+ |
molIndex++; |
| 796 |
+ |
nAtoms += lipidNatoms; |
| 797 |
+ |
} |
| 798 |
+ |
|
| 799 |
+ |
for(j=0; j<nWaters; j++){ |
| 800 |
+ |
molStart[molIndex] = nAtoms; |
| 801 |
+ |
molIndex++; |
| 802 |
+ |
nAtoms += waterNatoms; |
| 803 |
+ |
} |
| 804 |
+ |
|
| 805 |
+ |
theConfig = simnfo->getConfiguration(); |
| 806 |
+ |
theConfig->createArrays( nAtoms ); |
| 807 |
+ |
simnfo->atoms = new Atom*[nAtoms]; |
| 808 |
+ |
atoms = simnfo->atoms; |
| 809 |
+ |
|
| 810 |
+ |
// initialize lipid positions |
| 811 |
+ |
|
| 812 |
+ |
molIndex = 0; |
| 813 |
+ |
for(i=0; i<nLipids; i++ ){ |
| 814 |
+ |
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
| 815 |
+ |
molStart[molIndex], theConfig ); |
| 816 |
+ |
molIndex++; |
| 817 |
+ |
} |
| 818 |
+ |
|
| 819 |
+ |
// initialize the water positions |
| 820 |
+ |
|
| 821 |
+ |
for(i=0; i<nWaters; i++){ |
| 822 |
+ |
|
| 823 |
+ |
getRandomRot( waterSites[i].rot ); |
| 824 |
+ |
waterLocate->placeMol( waterSites[i].pos, waterSites[i].rot, atoms, |
| 825 |
+ |
molStart[molIndex], theConfig ); |
| 826 |
+ |
molIndex++; |
| 827 |
+ |
} |
| 828 |
+ |
|
| 829 |
+ |
// set up the SimInfo object |
| 830 |
+ |
|
| 831 |
+ |
double Hmat[3][3]; |
| 832 |
+ |
|
| 833 |
+ |
Hmat[0][0] = boxX; |
| 834 |
+ |
Hmat[0][1] = 0.0; |
| 835 |
+ |
Hmat[0][2] = 0.0; |
| 836 |
+ |
|
| 837 |
+ |
Hmat[1][0] = 0.0; |
| 838 |
+ |
Hmat[1][1] = boxY; |
| 839 |
+ |
Hmat[1][2] = 0.0; |
| 840 |
+ |
|
| 841 |
+ |
Hmat[2][0] = 0.0; |
| 842 |
+ |
Hmat[2][1] = 0.0; |
| 843 |
+ |
Hmat[2][2] = boxZ; |
| 844 |
+ |
|
| 845 |
+ |
|
| 846 |
+ |
bsInfo.boxX = boxX; |
| 847 |
+ |
bsInfo.boxY = boxY; |
| 848 |
+ |
bsInfo.boxZ = boxZ; |
| 849 |
+ |
|
| 850 |
+ |
simnfo->setBoxM( Hmat ); |
| 851 |
+ |
|
| 852 |
+ |
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
| 853 |
+ |
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
| 854 |
+ |
|
| 855 |
+ |
// set up the writer and write out |
| 856 |
+ |
|
| 857 |
+ |
writer = new DumpWriter( simnfo ); |
| 858 |
+ |
writer->writeFinal( 0.0 ); |
| 859 |
+ |
|
| 860 |
+ |
return 1; |
| 861 |
+ |
} |
| 862 |
+ |
|
| 863 |
+ |
|
| 864 |
|
void getRandomRot( double rot[3][3] ){ |
| 865 |
|
|
| 866 |
|
double theta, phi, psi; |
| 874 |
|
|
| 875 |
|
theta = acos( cosTheta ); |
| 876 |
|
|
| 877 |
+ |
getEulerRot( theta, phi, psi, rot ); |
| 878 |
+ |
} |
| 879 |
+ |
|
| 880 |
+ |
|
| 881 |
+ |
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ){ |
| 882 |
+ |
|
| 883 |
|
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
| 884 |
|
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
| 885 |
|
rot[0][2] = sin(theta) * sin(psi); |
| 892 |
|
rot[2][1] = -cos(phi) * sin(theta); |
| 893 |
|
rot[2][2] = cos(theta); |
| 894 |
|
} |
| 895 |
+ |
|
| 896 |
+ |
|
| 897 |
+ |
void getUnitRot( double u[3], double rot[3][3] ){ |
| 898 |
+ |
|
| 899 |
+ |
double theta, phi, psi; |
| 900 |
+ |
|
| 901 |
+ |
theta = acos(u[2]); |
| 902 |
+ |
phi = atan(u[1] / u[0]); |
| 903 |
+ |
psi = 0.0; |
| 904 |
+ |
|
| 905 |
+ |
getEulerRot( theta, phi, psi, rot ); |
| 906 |
+ |
} |
| 907 |
|
|
| 908 |
|
|
| 909 |
|
|