| 1 | 
 | 
| 2 | 
#include <iostream> | 
| 3 | 
#include <vector> | 
| 4 | 
#include <algorithm> | 
| 5 | 
 | 
| 6 | 
#include <cstdlib> | 
| 7 | 
#include <cstring> | 
| 8 | 
#include <cmath> | 
| 9 | 
 | 
| 10 | 
 | 
| 11 | 
#include "simError.h" | 
| 12 | 
#include "SimInfo.hpp" | 
| 13 | 
#include "ReadWrite.hpp" | 
| 14 | 
 | 
| 15 | 
#include "MoLocator.hpp" | 
| 16 | 
#include "sysBuild.hpp" | 
| 17 | 
#include "bilayerSys.hpp" | 
| 18 | 
 | 
| 19 | 
#include "latticeBuilder.hpp" | 
| 20 | 
 | 
| 21 | 
class SortCond{ | 
| 22 | 
   | 
| 23 | 
public: | 
| 24 | 
  bool operator()(const pair<int, double>& p1, const pair<int, double>& p2){ | 
| 25 | 
    return p1.second < p2.second; | 
| 26 | 
  } | 
| 27 | 
   | 
| 28 | 
   | 
| 29 | 
}; | 
| 30 | 
 | 
| 31 | 
 | 
| 32 | 
void buildMap( double &x, double &y, double &z, | 
| 33 | 
               double boxX, double boxY, double boxZ ); | 
| 34 | 
 | 
| 35 | 
int buildRandomBilayer( void ); | 
| 36 | 
 | 
| 37 | 
void getRandomRot( double rot[3][3] ); | 
| 38 | 
 | 
| 39 | 
int buildBilayer( int isRandom ){ | 
| 40 | 
   | 
| 41 | 
  if( isRandom ){ | 
| 42 | 
    return buildRandomBilayer(); | 
| 43 | 
  } | 
| 44 | 
  else{ | 
| 45 | 
    sprintf( painCave.errMsg, | 
| 46 | 
             "Cannot currently create a non-random bilayer.\n" ); | 
| 47 | 
    painCave.isFatal = 1; | 
| 48 | 
    simError(); | 
| 49 | 
    return 0; | 
| 50 | 
  } | 
| 51 | 
} | 
| 52 | 
 | 
| 53 | 
 | 
| 54 | 
int buildRandomBilayer( void ){ | 
| 55 | 
 | 
| 56 | 
  typedef struct{ | 
| 57 | 
    double rot[3][3]; | 
| 58 | 
    double pos[3]; | 
| 59 | 
  } coord; | 
| 60 | 
 | 
| 61 | 
 | 
| 62 | 
 | 
| 63 | 
  const double waterRho = 0.0334; // number density per cubic angstrom | 
| 64 | 
  const double waterVol = 4.0 / waterRho; // volume occupied by 4 waters | 
| 65 | 
  const double waterCell = 4.929; // fcc unit cell length | 
| 66 | 
 | 
| 67 | 
  Lattice myFCC( FCC_LATTICE_TYPE, waterCell ); | 
| 68 | 
  double *posX, *posY, *posZ; | 
| 69 | 
  double pos[3], posA[3], posB[3]; | 
| 70 | 
 | 
| 71 | 
  const double water_padding = 6.0; | 
| 72 | 
  const double lipid_spaceing = 8.0; | 
| 73 | 
 | 
| 74 | 
 | 
| 75 | 
  int i,j,k, l, m; | 
| 76 | 
  int nAtoms, atomIndex, molIndex, molID; | 
| 77 | 
  int* molSeq; | 
| 78 | 
  int* molMap; | 
| 79 | 
  int* molStart; | 
| 80 | 
  int* cardDeck; | 
| 81 | 
  int deckSize; | 
| 82 | 
  int rSite, rCard; | 
| 83 | 
  double cell; | 
| 84 | 
  int nCells, nSites, siteIndex; | 
| 85 | 
   | 
| 86 | 
  coord testSite; | 
| 87 | 
 | 
| 88 | 
  Atom** atoms; | 
| 89 | 
  SimInfo* simnfo; | 
| 90 | 
  SimState* theConfig; | 
| 91 | 
  DumpWriter* writer; | 
| 92 | 
 | 
| 93 | 
  MoleculeStamp* lipidStamp; | 
| 94 | 
  MoleculeStamp* waterStamp;   | 
| 95 | 
  MoLocator *lipidLocate; | 
| 96 | 
  MoLocator *waterLocate; | 
| 97 | 
  int foundLipid, foundWater; | 
| 98 | 
  int nLipids, lipidNatoms, nWaters, waterNatoms; | 
| 99 | 
  double testBox, maxLength; | 
| 100 | 
   | 
| 101 | 
  srand48( RAND_SEED ); | 
| 102 | 
 | 
| 103 | 
 | 
| 104 | 
  // create the simInfo objects | 
| 105 | 
 | 
| 106 | 
  simnfo = new SimInfo[3]; | 
| 107 | 
 | 
| 108 | 
 | 
| 109 | 
  // set the the lipidStamp | 
| 110 | 
 | 
| 111 | 
  foundLipid = 0; | 
| 112 | 
  foundWater = 0; | 
| 113 | 
  for(i=0; i<bsInfo.nComponents; i++){ | 
| 114 | 
    if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ | 
| 115 | 
           | 
| 116 | 
      foundLipid = 1; | 
| 117 | 
      lipidStamp = bsInfo.compStamps[i]; | 
| 118 | 
      nLipids = bsInfo.componentsNmol[i]; | 
| 119 | 
    } | 
| 120 | 
    if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ | 
| 121 | 
           | 
| 122 | 
      foundWater = 1; | 
| 123 | 
           | 
| 124 | 
      waterStamp = bsInfo.compStamps[i]; | 
| 125 | 
      nWaters = bsInfo.componentsNmol[i]; | 
| 126 | 
    } | 
| 127 | 
  } | 
| 128 | 
  if( !foundLipid ){ | 
| 129 | 
    sprintf(painCave.errMsg, | 
| 130 | 
            "Could not find lipid \"%s\" in the bass file.\n", | 
| 131 | 
            bsInfo.lipidName ); | 
| 132 | 
    painCave.isFatal = 1; | 
| 133 | 
    simError(); | 
| 134 | 
  } | 
| 135 | 
  if( !foundWater ){ | 
| 136 | 
    sprintf(painCave.errMsg, | 
| 137 | 
            "Could not find solvent \"%s\" in the bass file.\n", | 
| 138 | 
            bsInfo.waterName ); | 
| 139 | 
    painCave.isFatal = 1; | 
| 140 | 
    simError(); | 
| 141 | 
  } | 
| 142 | 
   | 
| 143 | 
  //create the temp Molocator and atom Arrays | 
| 144 | 
   | 
| 145 | 
  lipidLocate = new MoLocator( lipidStamp ); | 
| 146 | 
  lipidNatoms = lipidStamp->getNAtoms(); | 
| 147 | 
  maxLength = lipidLocate->getMaxLength(); | 
| 148 | 
 | 
| 149 | 
  waterLocate = new MoLocator( waterStamp ); | 
| 150 | 
  waterNatoms = waterStamp->getNAtoms(); | 
| 151 | 
   | 
| 152 | 
  nAtoms = lipidNatoms; | 
| 153 | 
 | 
| 154 | 
  simnfo[0].n_atoms = nAtoms; | 
| 155 | 
  simnfo[0].atoms=new Atom*[nAtoms]; | 
| 156 | 
  | 
| 157 | 
  theConfig = simnfo[0].getConfiguration(); | 
| 158 | 
  theConfig->createArrays( simnfo[0].n_atoms ); | 
| 159 | 
 | 
| 160 | 
  atoms=simnfo[0].atoms; | 
| 161 | 
         | 
| 162 | 
 | 
| 163 | 
  // create the test box for initial water displacement | 
| 164 | 
 | 
| 165 | 
  testBox = maxLength + waterCell * 4.0; // pad with 4 cells | 
| 166 | 
  nCells = (int)( testBox / waterCell + 1.0 ); | 
| 167 | 
  int testWaters = 4 * nCells * nCells * nCells; | 
| 168 | 
   | 
| 169 | 
  double* waterX = new double[testWaters]; | 
| 170 | 
  double* waterY = new double[testWaters]; | 
| 171 | 
  double* waterZ = new double[testWaters]; | 
| 172 | 
   | 
| 173 | 
  double x0 = 0.0 - ( testBox * 0.5 ); | 
| 174 | 
  double y0 = 0.0 - ( testBox * 0.5 ); | 
| 175 | 
  double z0 = 0.0 - ( testBox * 0.5 ); | 
| 176 | 
 | 
| 177 | 
 | 
| 178 | 
  // create an fcc lattice in the water box. | 
| 179 | 
 | 
| 180 | 
  int ndx = 0; | 
| 181 | 
  for( i=0; i < nCells; i++ ){ | 
| 182 | 
    for( j=0; j < nCells; j++ ){ | 
| 183 | 
      for( k=0; k < nCells; k++ ){ | 
| 184 | 
 | 
| 185 | 
        myFCC.getLatticePoints(&posX, &posY, &posZ, i, j, k); | 
| 186 | 
        for(l=0; l<4; l++){ | 
| 187 | 
          waterX[ndx]=posX[l]; | 
| 188 | 
          waterY[ndx]=posY[l]; | 
| 189 | 
          waterZ[ndx]=posZ[l]; | 
| 190 | 
          ndx++; | 
| 191 | 
        } | 
| 192 | 
      } | 
| 193 | 
    } | 
| 194 | 
  } | 
| 195 | 
 | 
| 196 | 
  // calculate the number of water's displaced by our lipid. | 
| 197 | 
 | 
| 198 | 
  testSite.rot[0][0] = 1.0; | 
| 199 | 
  testSite.rot[0][1] = 0.0; | 
| 200 | 
  testSite.rot[0][2] = 0.0; | 
| 201 | 
 | 
| 202 | 
  testSite.rot[1][0] = 0.0; | 
| 203 | 
  testSite.rot[1][1] = 1.0; | 
| 204 | 
  testSite.rot[1][2] = 0.0; | 
| 205 | 
 | 
| 206 | 
  testSite.rot[2][0] = 0.0; | 
| 207 | 
  testSite.rot[2][1] = 0.0; | 
| 208 | 
  testSite.rot[2][2] = 1.0; | 
| 209 | 
   | 
| 210 | 
  testSite.pos[0] = 0.0; | 
| 211 | 
  testSite.pos[1] = 0.0; | 
| 212 | 
  testSite.pos[2] = 0.0; | 
| 213 | 
 | 
| 214 | 
  lipidLocate->placeMol( testSite.pos, testSite.rot, atoms, 0, theConfig ); | 
| 215 | 
 | 
| 216 | 
  int *isActive = new int[testWaters]; | 
| 217 | 
  for(i=0; i<testWaters; i++) isActive[i] = 1; | 
| 218 | 
   | 
| 219 | 
  int n_deleted = 0; | 
| 220 | 
  double dx, dy, dz; | 
| 221 | 
  double dx2, dy2, dz2, dSqr; | 
| 222 | 
  double rCutSqr = water_padding * water_padding; | 
| 223 | 
   | 
| 224 | 
  for(i=0; ( (i<testWaters) && isActive[i] ); i++){ | 
| 225 | 
    for(j=0; ( (j<lipidNatoms) && isActive[i] ); j++){ | 
| 226 | 
       | 
| 227 | 
      atoms[j]->getPos( pos ); | 
| 228 | 
 | 
| 229 | 
      dx = waterX[i] - pos[0]; | 
| 230 | 
      dy = waterY[i] - pos[1]; | 
| 231 | 
      dz = waterZ[i] - pos[2]; | 
| 232 | 
 | 
| 233 | 
      buildMap( dx, dy, dz, testBox, testBox, testBox ); | 
| 234 | 
 | 
| 235 | 
      dx2 = dx * dx; | 
| 236 | 
      dy2 = dy * dy; | 
| 237 | 
      dz2 = dz * dz; | 
| 238 | 
           | 
| 239 | 
      dSqr = dx2 + dy2 + dz2; | 
| 240 | 
      if( dSqr < rCutSqr ){ | 
| 241 | 
        isActive[i] = 0; | 
| 242 | 
        n_deleted++; | 
| 243 | 
      } | 
| 244 | 
    } | 
| 245 | 
  } | 
| 246 | 
   | 
| 247 | 
  int targetWaters = nWaters + n_deleted * nLipids; | 
| 248 | 
 | 
| 249 | 
  targetWaters = (int) ( targetWaters * 1.2 ); | 
| 250 | 
 | 
| 251 | 
  // find the best box size for the sim | 
| 252 | 
 | 
| 253 | 
  int nCellsX, nCellsY, nCellsZ; | 
| 254 | 
 | 
| 255 | 
  const double boxTargetX = 56; | 
| 256 | 
  const double boxTargetY = 41; | 
| 257 | 
 | 
| 258 | 
  nCellsX = (int)ceil(boxTargetX / waterCell); | 
| 259 | 
  nCellsY = (int)ceil(boxTargetY / waterCell); | 
| 260 | 
   | 
| 261 | 
  int testTot; | 
| 262 | 
  int done = 0; | 
| 263 | 
  nCellsZ = 0; | 
| 264 | 
  while( !done ){ | 
| 265 | 
         | 
| 266 | 
    nCellsZ++; | 
| 267 | 
    testTot = 4 * nCellsX * nCellsY * nCellsZ; | 
| 268 | 
         | 
| 269 | 
    if( testTot >= targetWaters ) done = 1; | 
| 270 | 
  } | 
| 271 | 
 | 
| 272 | 
  // create the new water box to the new specifications | 
| 273 | 
   | 
| 274 | 
  int newWaters = nCellsX * nCellsY * nCellsZ * 4; | 
| 275 | 
   | 
| 276 | 
  delete[] waterX; | 
| 277 | 
  delete[] waterY; | 
| 278 | 
  delete[] waterZ; | 
| 279 | 
   | 
| 280 | 
  coord* waterSites = new coord[newWaters]; | 
| 281 | 
   | 
| 282 | 
  double box_x = waterCell * nCellsX; | 
| 283 | 
  double box_y = waterCell * nCellsY; | 
| 284 | 
  double box_z = waterCell * nCellsZ; | 
| 285 | 
          | 
| 286 | 
   | 
| 287 | 
 | 
| 288 | 
  // create an fcc lattice in the water box. | 
| 289 | 
   | 
| 290 | 
  ndx = 0; | 
| 291 | 
  for( i=0; i < nCellsX; i++ ){ | 
| 292 | 
    for( j=0; j < nCellsY; j++ ){ | 
| 293 | 
      for( k=0; k < nCellsZ; k++ ){ | 
| 294 | 
 | 
| 295 | 
        myFCC.getLatticePoints(&posX, &posY, &posZ, i, j, k); | 
| 296 | 
        for(l=0; l<4; l++){ | 
| 297 | 
          waterSites[ndx].pos[0] = posX[l]; | 
| 298 | 
          waterSites[ndx].pos[1] = posY[l]; | 
| 299 | 
          waterSites[ndx].pos[2] = posZ[l]; | 
| 300 | 
          ndx++; | 
| 301 | 
        } | 
| 302 | 
      } | 
| 303 | 
    } | 
| 304 | 
  }   | 
| 305 | 
 | 
| 306 | 
  coord* lipidSites = new coord[nLipids]; | 
| 307 | 
 | 
| 308 | 
  // start a 3D RSA for the for the lipid placements | 
| 309 | 
   | 
| 310 | 
   | 
| 311 | 
  int reject; | 
| 312 | 
  int testDX, acceptedDX; | 
| 313 | 
 | 
| 314 | 
  nAtoms = nLipids * lipidNatoms; | 
| 315 | 
 | 
| 316 | 
  simnfo[1].n_atoms = nAtoms; | 
| 317 | 
  simnfo[1].atoms=new Atom*[nAtoms]; | 
| 318 | 
  | 
| 319 | 
  theConfig = simnfo[1].getConfiguration(); | 
| 320 | 
  theConfig->createArrays( simnfo[1].n_atoms ); | 
| 321 | 
 | 
| 322 | 
  atoms=simnfo[1].atoms; | 
| 323 | 
 | 
| 324 | 
  rCutSqr = lipid_spaceing * lipid_spaceing; | 
| 325 | 
 | 
| 326 | 
  for(i=0; i<nLipids; i++ ){ | 
| 327 | 
    done = 0; | 
| 328 | 
    while( !done ){ | 
| 329 | 
           | 
| 330 | 
      lipidSites[i].pos[0] = drand48() * box_x; | 
| 331 | 
      lipidSites[i].pos[1] = drand48() * box_y; | 
| 332 | 
      lipidSites[i].pos[2] = drand48() * box_z; | 
| 333 | 
           | 
| 334 | 
      getRandomRot( lipidSites[i].rot ); | 
| 335 | 
           | 
| 336 | 
      ndx = i * lipidNatoms; | 
| 337 | 
 | 
| 338 | 
      lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms,  | 
| 339 | 
                             ndx, theConfig ); | 
| 340 | 
           | 
| 341 | 
      reject = 0; | 
| 342 | 
      for( j=0; !reject && j<i; j++){ | 
| 343 | 
        for(k=0; !reject && k<lipidNatoms; k++){ | 
| 344 | 
           | 
| 345 | 
          acceptedDX = j*lipidNatoms + k; | 
| 346 | 
          for(l=0; !reject && l<lipidNatoms; l++){ | 
| 347 | 
                 | 
| 348 | 
            testDX = ndx + l; | 
| 349 | 
 | 
| 350 | 
            atoms[testDX]->getPos( posA ); | 
| 351 | 
            atoms[acceptedDX]->getPos( posB ); | 
| 352 | 
             | 
| 353 | 
            dx = posA[0] - posB[0]; | 
| 354 | 
            dy = posA[1] - posB[1]; | 
| 355 | 
            dz = posA[2] - posB[2]; | 
| 356 | 
                 | 
| 357 | 
            buildMap( dx, dy, dz, box_x, box_y, box_z ); | 
| 358 | 
                 | 
| 359 | 
            dx2 = dx * dx; | 
| 360 | 
            dy2 = dy * dy; | 
| 361 | 
            dz2 = dz * dz; | 
| 362 | 
                 | 
| 363 | 
            dSqr = dx2 + dy2 + dz2; | 
| 364 | 
            if( dSqr < rCutSqr ) reject = 1; | 
| 365 | 
          } | 
| 366 | 
        } | 
| 367 | 
      } | 
| 368 | 
 | 
| 369 | 
      if( reject ){ | 
| 370 | 
 | 
| 371 | 
        for(j=0; j< lipidNatoms; j++) delete atoms[ndx+j]; | 
| 372 | 
      } | 
| 373 | 
      else{ | 
| 374 | 
        done = 1; | 
| 375 | 
        std::cout << (i+1) << " has been accepted\n"; | 
| 376 | 
      } | 
| 377 | 
    } | 
| 378 | 
  } | 
| 379 | 
         | 
| 380 | 
 | 
| 381 | 
  // zSort of the lipid positions | 
| 382 | 
 | 
| 383 | 
 | 
| 384 | 
  vector< pair<int,double> >zSortArray; | 
| 385 | 
  for(i=0;i<nLipids;i++)  | 
| 386 | 
    zSortArray.push_back( make_pair(i, lipidSites[i].pos[2]) ); | 
| 387 | 
 | 
| 388 | 
  sort(zSortArray.begin(),zSortArray.end(),SortCond()); | 
| 389 | 
 | 
| 390 | 
  ofstream outFile( "./zConBead3-01.bass", ios::app); | 
| 391 | 
 | 
| 392 | 
  for(i=0; i<nLipids; i++){ | 
| 393 | 
    outFile << "zConstraint[" << i << "]{\n" | 
| 394 | 
            << "  molIndex = " << zSortArray[i].first <<  ";\n" | 
| 395 | 
            << "  zPos = "; | 
| 396 | 
 | 
| 397 | 
    if(i<32) outFile << "60.0;\n"; | 
| 398 | 
    else outFile << "100.0;\n"; | 
| 399 | 
 | 
| 400 | 
    outFile << "  kRatio = 0.5;\n" | 
| 401 | 
            << "}\n"; | 
| 402 | 
  } | 
| 403 | 
   | 
| 404 | 
  outFile.close(); | 
| 405 | 
 | 
| 406 | 
 | 
| 407 | 
  // cut out the waters that overlap with the lipids. | 
| 408 | 
   | 
| 409 | 
 | 
| 410 | 
  delete[] isActive; | 
| 411 | 
  isActive = new int[newWaters]; | 
| 412 | 
  for(i=0; i<newWaters; i++) isActive[i] = 1; | 
| 413 | 
  int n_active = newWaters; | 
| 414 | 
  rCutSqr = water_padding * water_padding; | 
| 415 | 
   | 
| 416 | 
  for(i=0; ( (i<newWaters) && isActive[i] ); i++){ | 
| 417 | 
    for(j=0; ( (j<nAtoms) && isActive[i] ); j++){ | 
| 418 | 
 | 
| 419 | 
      atoms[j]->getPos( pos ); | 
| 420 | 
 | 
| 421 | 
      dx = waterSites[i].pos[0] - pos[0]; | 
| 422 | 
      dy = waterSites[i].pos[1] - pos[1]; | 
| 423 | 
      dz = waterSites[i].pos[2] - pos[2]; | 
| 424 | 
 | 
| 425 | 
      buildMap( dx, dy, dz, box_x, box_y, box_z ); | 
| 426 | 
 | 
| 427 | 
      dx2 = dx * dx; | 
| 428 | 
      dy2 = dy * dy; | 
| 429 | 
      dz2 = dz * dz; | 
| 430 | 
           | 
| 431 | 
      dSqr = dx2 + dy2 + dz2; | 
| 432 | 
      if( dSqr < rCutSqr ){ | 
| 433 | 
        isActive[i] = 0; | 
| 434 | 
        n_active--; | 
| 435 | 
 | 
| 436 | 
 | 
| 437 | 
      } | 
| 438 | 
    } | 
| 439 | 
  } | 
| 440 | 
 | 
| 441 | 
 | 
| 442 | 
 | 
| 443 | 
 | 
| 444 | 
  if( n_active < nWaters ){ | 
| 445 | 
         | 
| 446 | 
    sprintf( painCave.errMsg, | 
| 447 | 
             "Too many waters were removed, edit code and try again.\n" ); | 
| 448 | 
         | 
| 449 | 
    painCave.isFatal = 1; | 
| 450 | 
    simError(); | 
| 451 | 
  } | 
| 452 | 
 | 
| 453 | 
  int quickKill; | 
| 454 | 
  while( n_active > nWaters ){ | 
| 455 | 
 | 
| 456 | 
    quickKill = (int)(drand48()*newWaters); | 
| 457 | 
 | 
| 458 | 
    if( isActive[quickKill] ){ | 
| 459 | 
      isActive[quickKill] = 0; | 
| 460 | 
      n_active--; | 
| 461 | 
 | 
| 462 | 
    } | 
| 463 | 
  } | 
| 464 | 
 | 
| 465 | 
  if( n_active != nWaters ){ | 
| 466 | 
         | 
| 467 | 
    sprintf( painCave.errMsg, | 
| 468 | 
             "QuickKill didn't work right. n_active = %d, and nWaters = %d\n", | 
| 469 | 
             n_active, nWaters ); | 
| 470 | 
    painCave.isFatal = 1; | 
| 471 | 
    simError(); | 
| 472 | 
  } | 
| 473 | 
 | 
| 474 | 
  // clean up our messes before building the final system. | 
| 475 | 
 | 
| 476 | 
  simnfo[0].getConfiguration()->destroyArrays(); | 
| 477 | 
  simnfo[1].getConfiguration()->destroyArrays(); | 
| 478 | 
 | 
| 479 | 
  // create the real Atom arrays | 
| 480 | 
   | 
| 481 | 
  nAtoms = 0; | 
| 482 | 
  molIndex = 0; | 
| 483 | 
  molStart = new int[nLipids + nWaters];   | 
| 484 | 
   | 
| 485 | 
  for(j=0; j<nLipids; j++){ | 
| 486 | 
    molStart[molIndex] = nAtoms; | 
| 487 | 
    molIndex++; | 
| 488 | 
    nAtoms += lipidNatoms; | 
| 489 | 
  } | 
| 490 | 
 | 
| 491 | 
  for(j=0; j<nWaters; j++){ | 
| 492 | 
    molStart[molIndex] = nAtoms; | 
| 493 | 
    molIndex++; | 
| 494 | 
    nAtoms += waterNatoms; | 
| 495 | 
  } | 
| 496 | 
   | 
| 497 | 
  theConfig = simnfo[2].getConfiguration(); | 
| 498 | 
  theConfig->createArrays( nAtoms ); | 
| 499 | 
  simnfo[2].atoms = new Atom*[nAtoms]; | 
| 500 | 
  atoms = simnfo[2].atoms; | 
| 501 | 
  simnfo[2].n_atoms = nAtoms; | 
| 502 | 
   | 
| 503 | 
  // initialize lipid positions | 
| 504 | 
 | 
| 505 | 
  molIndex = 0; | 
| 506 | 
  for(i=0; i<nLipids; i++ ){ | 
| 507 | 
    lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, | 
| 508 | 
                           molStart[molIndex], theConfig ); | 
| 509 | 
    molIndex++; | 
| 510 | 
  } | 
| 511 | 
 | 
| 512 | 
  // initialize the water positions | 
| 513 | 
 | 
| 514 | 
  for(i=0; i<newWaters; i++){ | 
| 515 | 
         | 
| 516 | 
    if( isActive[i] ){ | 
| 517 | 
           | 
| 518 | 
      getRandomRot( waterSites[i].rot ); | 
| 519 | 
      waterLocate->placeMol( waterSites[i].pos, waterSites[i].rot, atoms, | 
| 520 | 
                             molStart[molIndex], theConfig ); | 
| 521 | 
      molIndex++; | 
| 522 | 
    } | 
| 523 | 
  }   | 
| 524 | 
 | 
| 525 | 
  // set up the SimInfo object | 
| 526 | 
   | 
| 527 | 
  double Hmat[3][3]; | 
| 528 | 
 | 
| 529 | 
  Hmat[0][0] = box_x; | 
| 530 | 
  Hmat[0][1] = 0.0; | 
| 531 | 
  Hmat[0][2] = 0.0; | 
| 532 | 
 | 
| 533 | 
  Hmat[1][0] = 0.0; | 
| 534 | 
  Hmat[1][1] = box_y; | 
| 535 | 
  Hmat[1][2] = 0.0; | 
| 536 | 
 | 
| 537 | 
  Hmat[2][0] = 0.0; | 
| 538 | 
  Hmat[2][1] = 0.0; | 
| 539 | 
  Hmat[2][2] = box_z; | 
| 540 | 
   | 
| 541 | 
 | 
| 542 | 
  bsInfo.boxX = box_x; | 
| 543 | 
  bsInfo.boxY = box_y; | 
| 544 | 
  bsInfo.boxZ = box_z; | 
| 545 | 
   | 
| 546 | 
  simnfo[2].setBoxM( Hmat ); | 
| 547 | 
 | 
| 548 | 
  sprintf( simnfo[2].sampleName, "%s.dump", bsInfo.outPrefix ); | 
| 549 | 
  sprintf( simnfo[2].finalName, "%s.init", bsInfo.outPrefix ); | 
| 550 | 
 | 
| 551 | 
  // set up the writer and write out | 
| 552 | 
   | 
| 553 | 
  writer = new DumpWriter( &simnfo[2] ); | 
| 554 | 
  writer->writeFinal( 0.0 ); | 
| 555 | 
         | 
| 556 | 
  // clean up the memory | 
| 557 | 
   | 
| 558 | 
  //     if( molMap != NULL )   delete[] molMap; | 
| 559 | 
  //     if( cardDeck != NULL ) delete[] cardDeck; | 
| 560 | 
  //     if( locate != NULL ){ | 
| 561 | 
  //       for(i=0; i<bsInfo.nComponents; i++){ | 
| 562 | 
  //             delete locate[i]; | 
| 563 | 
  //       } | 
| 564 | 
  //       delete[] locate; | 
| 565 | 
  //     } | 
| 566 | 
  //     if( atoms != NULL ){ | 
| 567 | 
  //       for(i=0; i<nAtoms; i++){ | 
| 568 | 
  //             delete atoms[i]; | 
| 569 | 
  //       } | 
| 570 | 
  //       Atom::destroyArrays(); | 
| 571 | 
  //       delete[] atoms; | 
| 572 | 
  //     } | 
| 573 | 
  //     if( molSeq != NULL ) delete[] molSeq; | 
| 574 | 
  //     if( simnfo != NULL ) delete simnfo; | 
| 575 | 
  //     if( writer != NULL ) delete writer; | 
| 576 | 
 | 
| 577 | 
  return 1; | 
| 578 | 
} | 
| 579 | 
 | 
| 580 | 
void getRandomRot( double rot[3][3] ){ | 
| 581 | 
 | 
| 582 | 
  double theta, phi, psi; | 
| 583 | 
  double cosTheta; | 
| 584 | 
 | 
| 585 | 
  // select random phi, psi, and cosTheta | 
| 586 | 
 | 
| 587 | 
  phi = 2.0 * M_PI * drand48(); | 
| 588 | 
  psi = 2.0 * M_PI * drand48(); | 
| 589 | 
  cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 | 
| 590 | 
 | 
| 591 | 
  theta = acos( cosTheta ); | 
| 592 | 
 | 
| 593 | 
  rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); | 
| 594 | 
  rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); | 
| 595 | 
  rot[0][2] = sin(theta) * sin(psi); | 
| 596 | 
   | 
| 597 | 
  rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); | 
| 598 | 
  rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); | 
| 599 | 
  rot[1][2] = sin(theta) * cos(psi); | 
| 600 | 
 | 
| 601 | 
  rot[2][0] = sin(phi) * sin(theta); | 
| 602 | 
  rot[2][1] = -cos(phi) * sin(theta); | 
| 603 | 
  rot[2][2] = cos(theta);   | 
| 604 | 
} | 
| 605 | 
                         | 
| 606 | 
 | 
| 607 | 
 | 
| 608 | 
void buildMap( double &x, double &y, double &z,  | 
| 609 | 
               double boxX, double boxY, double boxZ ){  | 
| 610 | 
   | 
| 611 | 
  if(x < 0) x -= boxX * (double)( (int)( (x / boxX)  - 0.5 ) ); | 
| 612 | 
  else x -= boxX * (double)( (int)( (x / boxX ) + 0.5)); | 
| 613 | 
 | 
| 614 | 
  if(y < 0) y -= boxY * (double)( (int)( (y / boxY)  - 0.5 ) ); | 
| 615 | 
  else y -= boxY * (double)( (int)( (y / boxY ) + 0.5)); | 
| 616 | 
   | 
| 617 | 
  if(z < 0) z -= boxZ * (double)( (int)( (z / boxZ)  - 0.5 ) ); | 
| 618 | 
  else z -= boxZ * (double)( (int)( (z / boxZ ) + 0.5)); | 
| 619 | 
} |