1 |
#include <iostream> |
2 |
|
3 |
#include <cstdlib> |
4 |
#include <cstring> |
5 |
#include <cmath> |
6 |
|
7 |
#include "simError.h" |
8 |
#include "SimInfo.hpp" |
9 |
#include "ReadWrite.hpp" |
10 |
|
11 |
#include "MoLocator.hpp" |
12 |
#include "sysBuild.hpp" |
13 |
#include "bilayerSys.hpp" |
14 |
|
15 |
|
16 |
|
17 |
void buildMap( double &x, double &y, double &z, |
18 |
double boxX, double boxY, double boxZ ); |
19 |
|
20 |
int buildRandomBilayer( void ); |
21 |
|
22 |
void getRandomRot( double rot[3][3] ); |
23 |
|
24 |
int buildBilayer( int isRandom ){ |
25 |
|
26 |
if( isRandom ){ |
27 |
return buildRandomBilayer(); |
28 |
} |
29 |
else{ |
30 |
sprintf( painCave.errMsg, |
31 |
"Cannot currently create a non-random bilayer.\n" ); |
32 |
painCave.isFatal = 1; |
33 |
simError(); |
34 |
return 0; |
35 |
} |
36 |
} |
37 |
|
38 |
|
39 |
int buildRandomBilayer( void ){ |
40 |
|
41 |
typedef struct{ |
42 |
double rot[3][3]; |
43 |
double pos[3]; |
44 |
} coord; |
45 |
|
46 |
|
47 |
const double waterRho = 0.0334; // number density per cubic angstrom |
48 |
const double waterVol = 4.0 / waterRho; // volume occupied by 4 waters |
49 |
const double waterCell = 4.929; // fcc unit cell length |
50 |
|
51 |
const double water_padding = 6.0; |
52 |
const double lipid_spaceing = 8.0; |
53 |
|
54 |
|
55 |
int i,j,k, l; |
56 |
int nAtoms, atomIndex, molIndex, molID; |
57 |
int* molSeq; |
58 |
int* molMap; |
59 |
int* molStart; |
60 |
int* cardDeck; |
61 |
int deckSize; |
62 |
int rSite, rCard; |
63 |
double cell; |
64 |
int nCells, nSites, siteIndex; |
65 |
|
66 |
coord testSite; |
67 |
|
68 |
Atom** atoms; |
69 |
SimInfo* simnfo; |
70 |
DumpWriter* writer; |
71 |
|
72 |
MoleculeStamp* lipidStamp; |
73 |
MoleculeStamp* waterStamp; |
74 |
MoLocator *lipidLocate; |
75 |
MoLocator *waterLocate; |
76 |
int foundLipid, foundWater; |
77 |
int nLipids, lipidNatoms, nWaters, waterNatoms; |
78 |
double testBox, maxLength; |
79 |
|
80 |
srand48( RAND_SEED ); |
81 |
|
82 |
|
83 |
// create the simInfo objects |
84 |
|
85 |
simnfo = new SimInfo[3]; |
86 |
|
87 |
|
88 |
// set the the lipidStamp |
89 |
|
90 |
foundLipid = 0; |
91 |
foundWater = 0; |
92 |
for(i=0; i<bsInfo.nComponents; i++){ |
93 |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ |
94 |
|
95 |
foundLipid = 1; |
96 |
lipidStamp = bsInfo.compStamps[i]; |
97 |
nLipids = bsInfo.componentsNmol[i]; |
98 |
} |
99 |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ |
100 |
|
101 |
foundWater = 1; |
102 |
|
103 |
waterStamp = bsInfo.compStamps[i]; |
104 |
nWaters = bsInfo.componentsNmol[i]; |
105 |
} |
106 |
} |
107 |
if( !foundLipid ){ |
108 |
sprintf(painCave.errMsg, |
109 |
"Could not find lipid \"%s\" in the bass file.\n", |
110 |
bsInfo.lipidName ); |
111 |
painCave.isFatal = 1; |
112 |
simError(); |
113 |
} |
114 |
if( !foundWater ){ |
115 |
sprintf(painCave.errMsg, |
116 |
"Could not find solvent \"%s\" in the bass file.\n", |
117 |
bsInfo.waterName ); |
118 |
painCave.isFatal = 1; |
119 |
simError(); |
120 |
} |
121 |
|
122 |
//create the temp Molocator and atom Arrays |
123 |
|
124 |
lipidLocate = new MoLocator( lipidStamp ); |
125 |
lipidNatoms = lipidStamp->getNAtoms(); |
126 |
maxLength = lipidLocate->getMaxLength(); |
127 |
|
128 |
waterLocate = new MoLocator( waterStamp ); |
129 |
waterNatoms = waterStamp->getNAtoms(); |
130 |
|
131 |
nAtoms = nLipids * lipidNatoms; |
132 |
|
133 |
simnfo[0].n_atoms = nAtoms; |
134 |
simnfo[0].atoms=new Atom*[nAtoms]; |
135 |
|
136 |
(simnfo[0]->getConfiguration())->createArrays( simnfo[0].n_atoms ); |
137 |
for(i=0; i<simnfo[0].n_atoms; i++) simnfo[0].atoms[i]->setCoords(); |
138 |
|
139 |
atoms=simnfo[0].atoms; |
140 |
|
141 |
|
142 |
// create the test box for initial water displacement |
143 |
|
144 |
testBox = maxLength + waterCell * 4.0; // pad with 4 cells |
145 |
nCells = (int)( testBox / waterCell + 1.0 ); |
146 |
int testWaters = 4 * nCells * nCells * nCells; |
147 |
|
148 |
double* waterX = new double[testWaters]; |
149 |
double* waterY = new double[testWaters]; |
150 |
double* waterZ = new double[testWaters]; |
151 |
|
152 |
double x0 = 0.0 - ( testBox * 0.5 ); |
153 |
double y0 = 0.0 - ( testBox * 0.5 ); |
154 |
double z0 = 0.0 - ( testBox * 0.5 ); |
155 |
|
156 |
|
157 |
// create an fcc lattice in the water box. |
158 |
|
159 |
int ndx = 0; |
160 |
for( i=0; i < nCells; i++ ){ |
161 |
for( j=0; j < nCells; j++ ){ |
162 |
for( k=0; k < nCells; k++ ){ |
163 |
|
164 |
waterX[ndx] = i * waterCell + x0; |
165 |
waterY[ndx] = j * waterCell + y0; |
166 |
waterZ[ndx] = k * waterCell + z0; |
167 |
ndx++; |
168 |
|
169 |
waterX[ndx] = i * waterCell + 0.5 * waterCell + x0; |
170 |
waterY[ndx] = j * waterCell + 0.5 * waterCell + y0; |
171 |
waterZ[ndx] = k * waterCell + z0; |
172 |
ndx++; |
173 |
|
174 |
waterX[ndx] = i * waterCell + x0; |
175 |
waterY[ndx] = j * waterCell + 0.5 * waterCell + y0; |
176 |
waterZ[ndx] = k * waterCell + 0.5 * waterCell + z0; |
177 |
ndx++; |
178 |
|
179 |
waterX[ndx] = i * waterCell + 0.5 * waterCell + x0; |
180 |
waterY[ndx] = j * waterCell + y0; |
181 |
waterZ[ndx] = k * waterCell + 0.5 * waterCell + z0; |
182 |
ndx++; |
183 |
} |
184 |
} |
185 |
} |
186 |
|
187 |
// calculate the number of water's displaced by our lipid. |
188 |
|
189 |
testSite.rot[0][0] = 1.0; |
190 |
testSite.rot[0][1] = 0.0; |
191 |
testSite.rot[0][2] = 0.0; |
192 |
|
193 |
testSite.rot[1][0] = 0.0; |
194 |
testSite.rot[1][1] = 1.0; |
195 |
testSite.rot[1][2] = 0.0; |
196 |
|
197 |
testSite.rot[2][0] = 0.0; |
198 |
testSite.rot[2][1] = 0.0; |
199 |
testSite.rot[2][2] = 1.0; |
200 |
|
201 |
testSite.pos[0] = 0.0; |
202 |
testSite.pos[1] = 0.0; |
203 |
testSite.pos[2] = 0.0; |
204 |
|
205 |
lipidLocate->placeMol( testSite.pos, testSite.rot, atoms, 0 ); |
206 |
|
207 |
int *isActive = new int[testWaters]; |
208 |
for(i=0; i<testWaters; i++) isActive[i] = 1; |
209 |
|
210 |
int n_deleted = 0; |
211 |
double dx, dy, dz; |
212 |
double dx2, dy2, dz2, dSqr; |
213 |
double rCutSqr = water_padding * water_padding; |
214 |
|
215 |
for(i=0; ( (i<testWaters) && isActive[i] ); i++){ |
216 |
for(j=0; ( (j<lipidNatoms) && isActive[i] ); j++){ |
217 |
|
218 |
dx = waterX[i] - atoms[j]->getX(); |
219 |
dy = waterY[i] - atoms[j]->getY(); |
220 |
dz = waterZ[i] - atoms[j]->getZ(); |
221 |
|
222 |
buildMap( dx, dy, dz, testBox, testBox, testBox ); |
223 |
|
224 |
dx2 = dx * dx; |
225 |
dy2 = dy * dy; |
226 |
dz2 = dz * dz; |
227 |
|
228 |
dSqr = dx2 + dy2 + dz2; |
229 |
if( dSqr < rCutSqr ){ |
230 |
isActive[i] = 0; |
231 |
n_deleted++; |
232 |
} |
233 |
} |
234 |
} |
235 |
|
236 |
int targetWaters = nWaters + n_deleted * nLipids; |
237 |
|
238 |
targetWaters = (int) ( targetWaters * 1.2 ); |
239 |
|
240 |
// find the best box size for the sim |
241 |
|
242 |
int testTot; |
243 |
int done = 0; |
244 |
ndx = 0; |
245 |
while( !done ){ |
246 |
|
247 |
ndx++; |
248 |
testTot = 4 * ndx * ndx * ndx; |
249 |
|
250 |
if( testTot >= targetWaters ) done = 1; |
251 |
} |
252 |
|
253 |
nCells = ndx; |
254 |
|
255 |
|
256 |
// create the new water box to the new specifications |
257 |
|
258 |
int newWaters = nCells * nCells * nCells * 4; |
259 |
|
260 |
delete[] waterX; |
261 |
delete[] waterY; |
262 |
delete[] waterZ; |
263 |
|
264 |
coord* waterSites = new coord[newWaters]; |
265 |
|
266 |
double box_x = waterCell * nCells; |
267 |
double box_y = waterCell * nCells; |
268 |
double box_z = waterCell * nCells; |
269 |
|
270 |
// create an fcc lattice in the water box. |
271 |
|
272 |
ndx = 0; |
273 |
for( i=0; i < nCells; i++ ){ |
274 |
for( j=0; j < nCells; j++ ){ |
275 |
for( k=0; k < nCells; k++ ){ |
276 |
|
277 |
waterSites[ndx].pos[0] = i * waterCell; |
278 |
waterSites[ndx].pos[1] = j * waterCell; |
279 |
waterSites[ndx].pos[2] = k * waterCell; |
280 |
ndx++; |
281 |
|
282 |
waterSites[ndx].pos[0] = i * waterCell + 0.5 * waterCell; |
283 |
waterSites[ndx].pos[1] = j * waterCell + 0.5 * waterCell; |
284 |
waterSites[ndx].pos[2] = k * waterCell; |
285 |
ndx++; |
286 |
|
287 |
waterSites[ndx].pos[0] = i * waterCell; |
288 |
waterSites[ndx].pos[1] = j * waterCell + 0.5 * waterCell; |
289 |
waterSites[ndx].pos[2] = k * waterCell + 0.5 * waterCell; |
290 |
ndx++; |
291 |
|
292 |
waterSites[ndx].pos[0] = i * waterCell + 0.5 * waterCell; |
293 |
waterSites[ndx].pos[1] = j * waterCell; |
294 |
waterSites[ndx].pos[2] = k * waterCell + 0.5 * waterCell; |
295 |
ndx++; |
296 |
} |
297 |
} |
298 |
} |
299 |
|
300 |
coord* lipidSites = new coord[nLipids]; |
301 |
|
302 |
// start a 3D RSA for the for the lipid placements |
303 |
|
304 |
|
305 |
int reject; |
306 |
int testDX, acceptedDX; |
307 |
|
308 |
rCutSqr = lipid_spaceing * lipid_spaceing; |
309 |
|
310 |
for(i=0; i<nLipids; i++ ){ |
311 |
done = 0; |
312 |
while( !done ){ |
313 |
|
314 |
lipidSites[i].pos[0] = drand48() * box_x; |
315 |
lipidSites[i].pos[1] = drand48() * box_y; |
316 |
lipidSites[i].pos[2] = drand48() * box_z; |
317 |
|
318 |
getRandomRot( lipidSites[i].rot ); |
319 |
|
320 |
ndx = i * lipidNatoms; |
321 |
|
322 |
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
323 |
ndx ); |
324 |
|
325 |
reject = 0; |
326 |
for( j=0; !reject && j<i; j++){ |
327 |
for(k=0; !reject && k<lipidNatoms; k++){ |
328 |
|
329 |
acceptedDX = j*lipidNatoms + k; |
330 |
for(l=0; !reject && l<lipidNatoms; l++){ |
331 |
|
332 |
testDX = ndx + l; |
333 |
|
334 |
dx = atoms[testDX]->getX() - atoms[acceptedDX]->getX(); |
335 |
dy = atoms[testDX]->getY() - atoms[acceptedDX]->getY(); |
336 |
dz = atoms[testDX]->getZ() - atoms[acceptedDX]->getZ(); |
337 |
|
338 |
buildMap( dx, dy, dz, box_x, box_y, box_z ); |
339 |
|
340 |
dx2 = dx * dx; |
341 |
dy2 = dy * dy; |
342 |
dz2 = dz * dz; |
343 |
|
344 |
dSqr = dx2 + dy2 + dz2; |
345 |
if( dSqr < rCutSqr ) reject = 1; |
346 |
} |
347 |
} |
348 |
} |
349 |
|
350 |
if( reject ){ |
351 |
|
352 |
for(j=0; j< lipidNatoms; j++) delete atoms[ndx+j]; |
353 |
} |
354 |
else{ |
355 |
done = 1; |
356 |
std::cout << i << " has been accepted\n"; |
357 |
} |
358 |
} |
359 |
} |
360 |
|
361 |
// cut out the waters that overlap with the lipids. |
362 |
|
363 |
delete[] isActive; |
364 |
isActive = new int[newWaters]; |
365 |
for(i=0; i<newWaters; i++) isActive[i] = 1; |
366 |
int n_active = newWaters; |
367 |
rCutSqr = water_padding * water_padding; |
368 |
|
369 |
for(i=0; ( (i<newWaters) && isActive[i] ); i++){ |
370 |
for(j=0; ( (j<nAtoms) && isActive[i] ); j++){ |
371 |
|
372 |
dx = waterSites[i].pos[0] - atoms[j]->getX(); |
373 |
dy = waterSites[i].pos[1] - atoms[j]->getY(); |
374 |
dz = waterSites[i].pos[2] - atoms[j]->getZ(); |
375 |
|
376 |
buildMap( dx, dy, dz, box_x, box_y, box_z ); |
377 |
|
378 |
dx2 = dx * dx; |
379 |
dy2 = dy * dy; |
380 |
dz2 = dz * dz; |
381 |
|
382 |
dSqr = dx2 + dy2 + dz2; |
383 |
if( dSqr < rCutSqr ){ |
384 |
isActive[i] = 0; |
385 |
n_active--; |
386 |
} |
387 |
} |
388 |
} |
389 |
|
390 |
if( n_active < nWaters ){ |
391 |
|
392 |
sprintf( painCave.errMsg, |
393 |
"Too many waters were removed, edit code and try again.\n" ); |
394 |
|
395 |
painCave.isFatal = 1; |
396 |
simError(); |
397 |
} |
398 |
|
399 |
int quickKill; |
400 |
while( n_active > nWaters ){ |
401 |
|
402 |
quickKill = (int)(drand48()*newWaters); |
403 |
|
404 |
if( isActive[quickKill] ){ |
405 |
isActive[quickKill] = 0; |
406 |
n_active--; |
407 |
} |
408 |
} |
409 |
|
410 |
if( n_active != nWaters ){ |
411 |
|
412 |
sprintf( painCave.errMsg, |
413 |
"QuickKill didn't work right. n_active = %d, and nWaters = %d\n", |
414 |
n_active, nWaters ); |
415 |
painCave.isFatal = 1; |
416 |
simError(); |
417 |
} |
418 |
|
419 |
// clean up our messes before building the final system. |
420 |
|
421 |
for(i=0; i<nAtoms; i++){ |
422 |
|
423 |
delete atoms[i]; |
424 |
} |
425 |
Atom::destroyArrays(); |
426 |
|
427 |
|
428 |
// create the real Atom arrays |
429 |
|
430 |
nAtoms = 0; |
431 |
molIndex = 0; |
432 |
molStart = new int[nLipids + nWaters]; |
433 |
|
434 |
for(j=0; j<nLipids; j++){ |
435 |
molStart[molIndex] = nAtoms; |
436 |
molIndex++; |
437 |
nAtoms += lipidNatoms; |
438 |
} |
439 |
|
440 |
for(j=0; j<nWaters; j++){ |
441 |
molStart[molIndex] = nAtoms; |
442 |
molIndex++; |
443 |
nAtoms += waterNatoms; |
444 |
} |
445 |
|
446 |
|
447 |
Atom::createArrays( nAtoms ); |
448 |
atoms = new Atom*[nAtoms]; |
449 |
|
450 |
|
451 |
// initialize lipid positions |
452 |
|
453 |
molIndex = 0; |
454 |
for(i=0; i<nLipids; i++ ){ |
455 |
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
456 |
molStart[molIndex] ); |
457 |
molIndex++; |
458 |
} |
459 |
|
460 |
// initialize the water positions |
461 |
|
462 |
for(i=0; i<newWaters; i++){ |
463 |
|
464 |
if( isActive[i] ){ |
465 |
|
466 |
getRandomRot( waterSites[i].rot ); |
467 |
waterLocate->placeMol( waterSites[i].pos, waterSites[i].rot, atoms, |
468 |
molStart[molIndex] ); |
469 |
molIndex++; |
470 |
} |
471 |
} |
472 |
|
473 |
// set up the SimInfo object |
474 |
|
475 |
bsInfo.boxX = box_x; |
476 |
bsInfo.boxY = box_y; |
477 |
bsInfo.boxZ = box_z; |
478 |
|
479 |
double boxVector[3]; |
480 |
|
481 |
boxVector[0] = bsInfo.boxX; |
482 |
boxVector[1] = bsInfo.boxY; |
483 |
boxVector[2] = bsInfo.boxZ; |
484 |
simnfo->setBox( boxVector ); |
485 |
|
486 |
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
487 |
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
488 |
|
489 |
simnfo->atoms = atoms; |
490 |
|
491 |
// set up the writer and write out |
492 |
|
493 |
writer = new DumpWriter( simnfo ); |
494 |
writer->writeFinal( 0.0 ); |
495 |
|
496 |
// clean up the memory |
497 |
|
498 |
// if( molMap != NULL ) delete[] molMap; |
499 |
// if( cardDeck != NULL ) delete[] cardDeck; |
500 |
// if( locate != NULL ){ |
501 |
// for(i=0; i<bsInfo.nComponents; i++){ |
502 |
// delete locate[i]; |
503 |
// } |
504 |
// delete[] locate; |
505 |
// } |
506 |
// if( atoms != NULL ){ |
507 |
// for(i=0; i<nAtoms; i++){ |
508 |
// delete atoms[i]; |
509 |
// } |
510 |
// Atom::destroyArrays(); |
511 |
// delete[] atoms; |
512 |
// } |
513 |
// if( molSeq != NULL ) delete[] molSeq; |
514 |
// if( simnfo != NULL ) delete simnfo; |
515 |
// if( writer != NULL ) delete writer; |
516 |
|
517 |
return 1; |
518 |
} |
519 |
|
520 |
|
521 |
|
522 |
int Old_buildRandomBilayer( void ){ |
523 |
|
524 |
int i,j,k; |
525 |
int nAtoms, atomIndex, molIndex, molID; |
526 |
int* molSeq; |
527 |
int* molMap; |
528 |
int* molStart; |
529 |
int* cardDeck; |
530 |
int deckSize; |
531 |
int rSite, rCard; |
532 |
double cell; |
533 |
int nCells, nSites, siteIndex; |
534 |
double rot[3][3]; |
535 |
double pos[3]; |
536 |
|
537 |
Atom** atoms; |
538 |
SimInfo* simnfo; |
539 |
DumpWriter* writer; |
540 |
MoLocator** locate; |
541 |
|
542 |
// initialize functions and variables |
543 |
|
544 |
srand48( RAND_SEED ); |
545 |
molSeq = NULL; |
546 |
molStart = NULL; |
547 |
molMap = NULL; |
548 |
cardDeck = NULL; |
549 |
atoms = NULL; |
550 |
locate = NULL; |
551 |
simnfo = NULL; |
552 |
writer = NULL; |
553 |
|
554 |
// calculate the number of cells in the fcc box |
555 |
|
556 |
nCells = 0; |
557 |
nSites = 0; |
558 |
while( nSites < bsInfo.totNmol ){ |
559 |
nCells++; |
560 |
nSites = 4.0 * pow( (double)nCells, 3.0 ); |
561 |
} |
562 |
|
563 |
|
564 |
// create the molMap and cardDeck arrays |
565 |
|
566 |
molMap = new int[nSites]; |
567 |
cardDeck = new int[nSites]; |
568 |
|
569 |
for(i=0; i<nSites; i++){ |
570 |
molMap[i] = -1; |
571 |
cardDeck[i] = i; |
572 |
} |
573 |
|
574 |
// randomly place the molecules on the sites |
575 |
|
576 |
deckSize = nSites; |
577 |
for(i=0; i<bsInfo.totNmol; i++){ |
578 |
rCard = (int)( deckSize * drand48() ); |
579 |
rSite = cardDeck[rCard]; |
580 |
molMap[rSite] = i; |
581 |
|
582 |
// book keep the card deck; |
583 |
|
584 |
deckSize--; |
585 |
cardDeck[rCard] = cardDeck[deckSize]; |
586 |
} |
587 |
|
588 |
|
589 |
// create the MoLocator and Atom arrays |
590 |
|
591 |
nAtoms = 0; |
592 |
molIndex = 0; |
593 |
locate = new MoLocator*[bsInfo.nComponents]; |
594 |
molSeq = new int[bsInfo.totNmol]; |
595 |
molStart = new int[bsInfo.totNmol]; |
596 |
for(i=0; i<bsInfo.nComponents; i++){ |
597 |
locate[i] = new MoLocator( bsInfo.compStamps[i] ); |
598 |
for(j=0; j<bsInfo.componentsNmol[i]; j++){ |
599 |
molSeq[molIndex] = i; |
600 |
molStart[molIndex] = nAtoms; |
601 |
molIndex++; |
602 |
nAtoms += bsInfo.compStamps[i]->getNAtoms(); |
603 |
} |
604 |
} |
605 |
|
606 |
Atom::createArrays( nAtoms ); |
607 |
atoms = new Atom*[nAtoms]; |
608 |
|
609 |
|
610 |
// place the molecules at each FCC site |
611 |
|
612 |
cell = 5.0; |
613 |
for(i=0; i<bsInfo.nComponents; i++){ |
614 |
if(cell < locate[i]->getMaxLength() ) cell = locate[i]->getMaxLength(); |
615 |
} |
616 |
cell *= 1.2; // add a little buffer |
617 |
|
618 |
cell *= M_SQRT2; |
619 |
|
620 |
siteIndex = 0; |
621 |
for(i=0; i<nCells; i++){ |
622 |
for(j=0; j<nCells; j++){ |
623 |
for(k=0; k<nCells; k++){ |
624 |
|
625 |
if( molMap[siteIndex] >= 0 ){ |
626 |
pos[0] = i * cell; |
627 |
pos[1] = j * cell; |
628 |
pos[2] = k * cell; |
629 |
|
630 |
getRandomRot( rot ); |
631 |
molID = molSeq[molMap[siteIndex]]; |
632 |
atomIndex = molStart[ molMap[siteIndex] ]; |
633 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
634 |
} |
635 |
siteIndex++; |
636 |
|
637 |
if( molMap[siteIndex] >= 0 ){ |
638 |
pos[0] = i * cell + (0.5 * cell); |
639 |
pos[1] = j * cell; |
640 |
pos[2] = k * cell + (0.5 * cell); |
641 |
|
642 |
getRandomRot( rot ); |
643 |
molID = molSeq[molMap[siteIndex]]; |
644 |
atomIndex = molStart[ molMap[siteIndex] ]; |
645 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
646 |
} |
647 |
siteIndex++; |
648 |
|
649 |
if( molMap[siteIndex] >= 0 ){ |
650 |
pos[0] = i * cell + (0.5 * cell); |
651 |
pos[1] = j * cell + (0.5 * cell); |
652 |
pos[2] = k * cell; |
653 |
|
654 |
getRandomRot( rot ); |
655 |
molID = molSeq[molMap[siteIndex]]; |
656 |
atomIndex = molStart[ molMap[siteIndex] ]; |
657 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
658 |
} |
659 |
siteIndex++; |
660 |
|
661 |
if( molMap[siteIndex] >= 0 ){ |
662 |
pos[0] = i * cell; |
663 |
pos[1] = j * cell + (0.5 * cell); |
664 |
pos[2] = k * cell + (0.5 * cell); |
665 |
|
666 |
getRandomRot( rot ); |
667 |
molID = molSeq[molMap[siteIndex]]; |
668 |
atomIndex = molStart[ molMap[siteIndex] ]; |
669 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
670 |
} |
671 |
siteIndex++; |
672 |
} |
673 |
} |
674 |
} |
675 |
|
676 |
// set up the SimInfo object |
677 |
|
678 |
bsInfo.boxX = nCells * cell; |
679 |
bsInfo.boxY = nCells * cell; |
680 |
bsInfo.boxZ = nCells * cell; |
681 |
|
682 |
double boxVector[3]; |
683 |
simnfo = new SimInfo(); |
684 |
simnfo->n_atoms = nAtoms; |
685 |
boxVector[0] = bsInfo.boxX; |
686 |
boxVector[1] = bsInfo.boxY; |
687 |
boxVector[2] = bsInfo.boxZ; |
688 |
simnfo->setBox( boxVector ); |
689 |
|
690 |
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
691 |
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
692 |
|
693 |
simnfo->atoms = atoms; |
694 |
|
695 |
// set up the writer and write out |
696 |
|
697 |
writer = new DumpWriter( simnfo ); |
698 |
writer->writeFinal(0.0); |
699 |
|
700 |
// clean up the memory |
701 |
|
702 |
if( molMap != NULL ) delete[] molMap; |
703 |
if( cardDeck != NULL ) delete[] cardDeck; |
704 |
if( locate != NULL ){ |
705 |
for(i=0; i<bsInfo.nComponents; i++){ |
706 |
delete locate[i]; |
707 |
} |
708 |
delete[] locate; |
709 |
} |
710 |
if( atoms != NULL ){ |
711 |
for(i=0; i<nAtoms; i++){ |
712 |
delete atoms[i]; |
713 |
} |
714 |
Atom::destroyArrays(); |
715 |
delete[] atoms; |
716 |
} |
717 |
if( molSeq != NULL ) delete[] molSeq; |
718 |
if( simnfo != NULL ) delete simnfo; |
719 |
if( writer != NULL ) delete writer; |
720 |
|
721 |
return 1; |
722 |
} |
723 |
|
724 |
|
725 |
void getRandomRot( double rot[3][3] ){ |
726 |
|
727 |
double theta, phi, psi; |
728 |
double cosTheta; |
729 |
|
730 |
// select random phi, psi, and cosTheta |
731 |
|
732 |
phi = 2.0 * M_PI * drand48(); |
733 |
psi = 2.0 * M_PI * drand48(); |
734 |
cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 |
735 |
|
736 |
theta = acos( cosTheta ); |
737 |
|
738 |
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
739 |
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
740 |
rot[0][2] = sin(theta) * sin(psi); |
741 |
|
742 |
rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
743 |
rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
744 |
rot[1][2] = sin(theta) * cos(psi); |
745 |
|
746 |
rot[2][0] = sin(phi) * sin(theta); |
747 |
rot[2][1] = -cos(phi) * sin(theta); |
748 |
rot[2][2] = cos(theta); |
749 |
} |
750 |
|
751 |
|
752 |
|
753 |
void buildMap( double &x, double &y, double &z, |
754 |
double boxX, double boxY, double boxZ ){ |
755 |
|
756 |
if(x < 0) x -= boxX * (double)( (int)( (x / boxX) - 0.5 ) ); |
757 |
else x -= boxX * (double)( (int)( (x / boxX ) + 0.5)); |
758 |
|
759 |
if(y < 0) y -= boxY * (double)( (int)( (y / boxY) - 0.5 ) ); |
760 |
else y -= boxY * (double)( (int)( (y / boxY ) + 0.5)); |
761 |
|
762 |
if(z < 0) z -= boxZ * (double)( (int)( (z / boxZ) - 0.5 ) ); |
763 |
else z -= boxZ * (double)( (int)( (z / boxZ ) + 0.5)); |
764 |
} |