1 |
mmeineke |
707 |
|
2 |
chuckv |
678 |
#include <iostream> |
3 |
mmeineke |
707 |
#include <vector> |
4 |
|
|
#include <algorithm> |
5 |
chuckv |
678 |
|
6 |
|
|
#include <cstdlib> |
7 |
|
|
#include <cstring> |
8 |
|
|
#include <cmath> |
9 |
|
|
|
10 |
mmeineke |
707 |
|
11 |
chuckv |
678 |
#include "simError.h" |
12 |
|
|
#include "SimInfo.hpp" |
13 |
|
|
#include "ReadWrite.hpp" |
14 |
|
|
|
15 |
|
|
#include "MoLocator.hpp" |
16 |
|
|
#include "sysBuild.hpp" |
17 |
|
|
#include "bilayerSys.hpp" |
18 |
|
|
|
19 |
chuckv |
700 |
#include "latticeBuilder.hpp" |
20 |
chuckv |
678 |
|
21 |
mmeineke |
707 |
class SortCond{ |
22 |
|
|
|
23 |
|
|
public: |
24 |
|
|
bool operator()(const pair<int, double>& p1, const pair<int, double>& p2){ |
25 |
|
|
return p1.second < p2.second; |
26 |
|
|
} |
27 |
|
|
|
28 |
|
|
|
29 |
|
|
}; |
30 |
|
|
|
31 |
|
|
|
32 |
chuckv |
678 |
void buildMap( double &x, double &y, double &z, |
33 |
chuckv |
700 |
double boxX, double boxY, double boxZ ); |
34 |
chuckv |
678 |
|
35 |
|
|
int buildRandomBilayer( void ); |
36 |
gezelter |
817 |
int buildLatticeBilayer( int isHexLattice, |
37 |
|
|
double hexSpacing, |
38 |
|
|
double aLat, |
39 |
|
|
double bLat, |
40 |
|
|
int targetNlipid, |
41 |
|
|
double targetWaterLipidRatio, |
42 |
|
|
double leafSpacing); |
43 |
chuckv |
678 |
|
44 |
|
|
void getRandomRot( double rot[3][3] ); |
45 |
gezelter |
817 |
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ); |
46 |
|
|
void getUnitRot( double unit[3], double rot[3][3] ); |
47 |
chuckv |
678 |
|
48 |
|
|
int buildBilayer( int isRandom ){ |
49 |
|
|
|
50 |
|
|
if( isRandom ){ |
51 |
|
|
return buildRandomBilayer(); |
52 |
|
|
} |
53 |
|
|
else{ |
54 |
gezelter |
817 |
|
55 |
|
|
|
56 |
|
|
|
57 |
|
|
return buildLatticeBilayer(); |
58 |
chuckv |
678 |
} |
59 |
|
|
} |
60 |
|
|
|
61 |
|
|
|
62 |
|
|
int buildRandomBilayer( void ){ |
63 |
|
|
|
64 |
|
|
typedef struct{ |
65 |
|
|
double rot[3][3]; |
66 |
|
|
double pos[3]; |
67 |
|
|
} coord; |
68 |
|
|
|
69 |
|
|
|
70 |
chuckv |
700 |
|
71 |
chuckv |
678 |
const double waterRho = 0.0334; // number density per cubic angstrom |
72 |
|
|
const double waterVol = 4.0 / waterRho; // volume occupied by 4 waters |
73 |
|
|
const double waterCell = 4.929; // fcc unit cell length |
74 |
|
|
|
75 |
chuckv |
700 |
Lattice myFCC( FCC_LATTICE_TYPE, waterCell ); |
76 |
|
|
double *posX, *posY, *posZ; |
77 |
|
|
double pos[3], posA[3], posB[3]; |
78 |
|
|
|
79 |
chuckv |
678 |
const double water_padding = 6.0; |
80 |
|
|
const double lipid_spaceing = 8.0; |
81 |
|
|
|
82 |
|
|
|
83 |
chuckv |
700 |
int i,j,k, l, m; |
84 |
chuckv |
678 |
int nAtoms, atomIndex, molIndex, molID; |
85 |
|
|
int* molSeq; |
86 |
|
|
int* molMap; |
87 |
|
|
int* molStart; |
88 |
|
|
int* cardDeck; |
89 |
|
|
int deckSize; |
90 |
|
|
int rSite, rCard; |
91 |
|
|
double cell; |
92 |
|
|
int nCells, nSites, siteIndex; |
93 |
|
|
|
94 |
|
|
coord testSite; |
95 |
|
|
|
96 |
|
|
Atom** atoms; |
97 |
|
|
SimInfo* simnfo; |
98 |
chuckv |
700 |
SimState* theConfig; |
99 |
chuckv |
678 |
DumpWriter* writer; |
100 |
|
|
|
101 |
|
|
MoleculeStamp* lipidStamp; |
102 |
|
|
MoleculeStamp* waterStamp; |
103 |
|
|
MoLocator *lipidLocate; |
104 |
|
|
MoLocator *waterLocate; |
105 |
|
|
int foundLipid, foundWater; |
106 |
|
|
int nLipids, lipidNatoms, nWaters, waterNatoms; |
107 |
|
|
double testBox, maxLength; |
108 |
|
|
|
109 |
|
|
srand48( RAND_SEED ); |
110 |
|
|
|
111 |
|
|
|
112 |
|
|
// create the simInfo objects |
113 |
|
|
|
114 |
|
|
simnfo = new SimInfo[3]; |
115 |
|
|
|
116 |
|
|
|
117 |
|
|
// set the the lipidStamp |
118 |
|
|
|
119 |
|
|
foundLipid = 0; |
120 |
|
|
foundWater = 0; |
121 |
|
|
for(i=0; i<bsInfo.nComponents; i++){ |
122 |
|
|
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ |
123 |
chuckv |
700 |
|
124 |
chuckv |
678 |
foundLipid = 1; |
125 |
|
|
lipidStamp = bsInfo.compStamps[i]; |
126 |
|
|
nLipids = bsInfo.componentsNmol[i]; |
127 |
|
|
} |
128 |
|
|
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ |
129 |
chuckv |
700 |
|
130 |
chuckv |
678 |
foundWater = 1; |
131 |
chuckv |
700 |
|
132 |
chuckv |
678 |
waterStamp = bsInfo.compStamps[i]; |
133 |
|
|
nWaters = bsInfo.componentsNmol[i]; |
134 |
|
|
} |
135 |
|
|
} |
136 |
|
|
if( !foundLipid ){ |
137 |
|
|
sprintf(painCave.errMsg, |
138 |
|
|
"Could not find lipid \"%s\" in the bass file.\n", |
139 |
|
|
bsInfo.lipidName ); |
140 |
|
|
painCave.isFatal = 1; |
141 |
|
|
simError(); |
142 |
|
|
} |
143 |
|
|
if( !foundWater ){ |
144 |
chuckv |
700 |
sprintf(painCave.errMsg, |
145 |
|
|
"Could not find solvent \"%s\" in the bass file.\n", |
146 |
chuckv |
678 |
bsInfo.waterName ); |
147 |
|
|
painCave.isFatal = 1; |
148 |
|
|
simError(); |
149 |
|
|
} |
150 |
|
|
|
151 |
|
|
//create the temp Molocator and atom Arrays |
152 |
|
|
|
153 |
|
|
lipidLocate = new MoLocator( lipidStamp ); |
154 |
|
|
lipidNatoms = lipidStamp->getNAtoms(); |
155 |
|
|
maxLength = lipidLocate->getMaxLength(); |
156 |
|
|
|
157 |
|
|
waterLocate = new MoLocator( waterStamp ); |
158 |
|
|
waterNatoms = waterStamp->getNAtoms(); |
159 |
|
|
|
160 |
chuckv |
700 |
nAtoms = lipidNatoms; |
161 |
chuckv |
678 |
|
162 |
chuckv |
700 |
simnfo[0].n_atoms = nAtoms; |
163 |
|
|
simnfo[0].atoms=new Atom*[nAtoms]; |
164 |
chuckv |
678 |
|
165 |
chuckv |
700 |
theConfig = simnfo[0].getConfiguration(); |
166 |
|
|
theConfig->createArrays( simnfo[0].n_atoms ); |
167 |
chuckv |
678 |
|
168 |
chuckv |
700 |
atoms=simnfo[0].atoms; |
169 |
chuckv |
678 |
|
170 |
|
|
|
171 |
|
|
// create the test box for initial water displacement |
172 |
|
|
|
173 |
|
|
testBox = maxLength + waterCell * 4.0; // pad with 4 cells |
174 |
|
|
nCells = (int)( testBox / waterCell + 1.0 ); |
175 |
|
|
int testWaters = 4 * nCells * nCells * nCells; |
176 |
|
|
|
177 |
|
|
double* waterX = new double[testWaters]; |
178 |
|
|
double* waterY = new double[testWaters]; |
179 |
|
|
double* waterZ = new double[testWaters]; |
180 |
|
|
|
181 |
|
|
double x0 = 0.0 - ( testBox * 0.5 ); |
182 |
|
|
double y0 = 0.0 - ( testBox * 0.5 ); |
183 |
|
|
double z0 = 0.0 - ( testBox * 0.5 ); |
184 |
|
|
|
185 |
|
|
|
186 |
|
|
// create an fcc lattice in the water box. |
187 |
|
|
|
188 |
|
|
int ndx = 0; |
189 |
|
|
for( i=0; i < nCells; i++ ){ |
190 |
|
|
for( j=0; j < nCells; j++ ){ |
191 |
|
|
for( k=0; k < nCells; k++ ){ |
192 |
chuckv |
700 |
|
193 |
|
|
myFCC.getLatticePoints(&posX, &posY, &posZ, i, j, k); |
194 |
|
|
for(l=0; l<4; l++){ |
195 |
|
|
waterX[ndx]=posX[l]; |
196 |
|
|
waterY[ndx]=posY[l]; |
197 |
|
|
waterZ[ndx]=posZ[l]; |
198 |
|
|
ndx++; |
199 |
|
|
} |
200 |
chuckv |
678 |
} |
201 |
|
|
} |
202 |
|
|
} |
203 |
|
|
|
204 |
|
|
// calculate the number of water's displaced by our lipid. |
205 |
|
|
|
206 |
|
|
testSite.rot[0][0] = 1.0; |
207 |
|
|
testSite.rot[0][1] = 0.0; |
208 |
|
|
testSite.rot[0][2] = 0.0; |
209 |
|
|
|
210 |
|
|
testSite.rot[1][0] = 0.0; |
211 |
|
|
testSite.rot[1][1] = 1.0; |
212 |
|
|
testSite.rot[1][2] = 0.0; |
213 |
|
|
|
214 |
|
|
testSite.rot[2][0] = 0.0; |
215 |
|
|
testSite.rot[2][1] = 0.0; |
216 |
|
|
testSite.rot[2][2] = 1.0; |
217 |
|
|
|
218 |
|
|
testSite.pos[0] = 0.0; |
219 |
|
|
testSite.pos[1] = 0.0; |
220 |
|
|
testSite.pos[2] = 0.0; |
221 |
|
|
|
222 |
chuckv |
700 |
lipidLocate->placeMol( testSite.pos, testSite.rot, atoms, 0, theConfig ); |
223 |
chuckv |
678 |
|
224 |
|
|
int *isActive = new int[testWaters]; |
225 |
|
|
for(i=0; i<testWaters; i++) isActive[i] = 1; |
226 |
|
|
|
227 |
|
|
int n_deleted = 0; |
228 |
|
|
double dx, dy, dz; |
229 |
|
|
double dx2, dy2, dz2, dSqr; |
230 |
|
|
double rCutSqr = water_padding * water_padding; |
231 |
|
|
|
232 |
|
|
for(i=0; ( (i<testWaters) && isActive[i] ); i++){ |
233 |
|
|
for(j=0; ( (j<lipidNatoms) && isActive[i] ); j++){ |
234 |
chuckv |
700 |
|
235 |
|
|
atoms[j]->getPos( pos ); |
236 |
chuckv |
678 |
|
237 |
chuckv |
700 |
dx = waterX[i] - pos[0]; |
238 |
|
|
dy = waterY[i] - pos[1]; |
239 |
|
|
dz = waterZ[i] - pos[2]; |
240 |
chuckv |
678 |
|
241 |
|
|
buildMap( dx, dy, dz, testBox, testBox, testBox ); |
242 |
|
|
|
243 |
|
|
dx2 = dx * dx; |
244 |
|
|
dy2 = dy * dy; |
245 |
|
|
dz2 = dz * dz; |
246 |
chuckv |
700 |
|
247 |
chuckv |
678 |
dSqr = dx2 + dy2 + dz2; |
248 |
|
|
if( dSqr < rCutSqr ){ |
249 |
|
|
isActive[i] = 0; |
250 |
|
|
n_deleted++; |
251 |
|
|
} |
252 |
|
|
} |
253 |
|
|
} |
254 |
|
|
|
255 |
|
|
int targetWaters = nWaters + n_deleted * nLipids; |
256 |
|
|
|
257 |
|
|
targetWaters = (int) ( targetWaters * 1.2 ); |
258 |
|
|
|
259 |
|
|
// find the best box size for the sim |
260 |
|
|
|
261 |
mmeineke |
707 |
int nCellsX, nCellsY, nCellsZ; |
262 |
|
|
|
263 |
tim |
763 |
const double boxTargetX = 66.22752; |
264 |
|
|
const double boxTargetY = 60.53088; |
265 |
mmeineke |
707 |
|
266 |
|
|
nCellsX = (int)ceil(boxTargetX / waterCell); |
267 |
|
|
nCellsY = (int)ceil(boxTargetY / waterCell); |
268 |
|
|
|
269 |
chuckv |
678 |
int testTot; |
270 |
|
|
int done = 0; |
271 |
mmeineke |
707 |
nCellsZ = 0; |
272 |
chuckv |
678 |
while( !done ){ |
273 |
chuckv |
700 |
|
274 |
mmeineke |
707 |
nCellsZ++; |
275 |
|
|
testTot = 4 * nCellsX * nCellsY * nCellsZ; |
276 |
chuckv |
700 |
|
277 |
chuckv |
678 |
if( testTot >= targetWaters ) done = 1; |
278 |
|
|
} |
279 |
|
|
|
280 |
|
|
// create the new water box to the new specifications |
281 |
|
|
|
282 |
mmeineke |
707 |
int newWaters = nCellsX * nCellsY * nCellsZ * 4; |
283 |
chuckv |
678 |
|
284 |
|
|
delete[] waterX; |
285 |
|
|
delete[] waterY; |
286 |
|
|
delete[] waterZ; |
287 |
|
|
|
288 |
|
|
coord* waterSites = new coord[newWaters]; |
289 |
|
|
|
290 |
mmeineke |
707 |
double box_x = waterCell * nCellsX; |
291 |
|
|
double box_y = waterCell * nCellsY; |
292 |
|
|
double box_z = waterCell * nCellsZ; |
293 |
chuckv |
700 |
|
294 |
chuckv |
678 |
// create an fcc lattice in the water box. |
295 |
|
|
|
296 |
|
|
ndx = 0; |
297 |
mmeineke |
707 |
for( i=0; i < nCellsX; i++ ){ |
298 |
|
|
for( j=0; j < nCellsY; j++ ){ |
299 |
|
|
for( k=0; k < nCellsZ; k++ ){ |
300 |
chuckv |
700 |
|
301 |
|
|
myFCC.getLatticePoints(&posX, &posY, &posZ, i, j, k); |
302 |
|
|
for(l=0; l<4; l++){ |
303 |
|
|
waterSites[ndx].pos[0] = posX[l]; |
304 |
|
|
waterSites[ndx].pos[1] = posY[l]; |
305 |
|
|
waterSites[ndx].pos[2] = posZ[l]; |
306 |
|
|
ndx++; |
307 |
|
|
} |
308 |
chuckv |
678 |
} |
309 |
|
|
} |
310 |
|
|
} |
311 |
|
|
|
312 |
|
|
coord* lipidSites = new coord[nLipids]; |
313 |
|
|
|
314 |
|
|
// start a 3D RSA for the for the lipid placements |
315 |
|
|
|
316 |
|
|
|
317 |
|
|
int reject; |
318 |
|
|
int testDX, acceptedDX; |
319 |
|
|
|
320 |
chuckv |
700 |
nAtoms = nLipids * lipidNatoms; |
321 |
|
|
|
322 |
|
|
simnfo[1].n_atoms = nAtoms; |
323 |
|
|
simnfo[1].atoms=new Atom*[nAtoms]; |
324 |
|
|
|
325 |
|
|
theConfig = simnfo[1].getConfiguration(); |
326 |
|
|
theConfig->createArrays( simnfo[1].n_atoms ); |
327 |
|
|
|
328 |
|
|
atoms=simnfo[1].atoms; |
329 |
|
|
|
330 |
chuckv |
678 |
rCutSqr = lipid_spaceing * lipid_spaceing; |
331 |
|
|
|
332 |
|
|
for(i=0; i<nLipids; i++ ){ |
333 |
|
|
done = 0; |
334 |
|
|
while( !done ){ |
335 |
chuckv |
700 |
|
336 |
chuckv |
678 |
lipidSites[i].pos[0] = drand48() * box_x; |
337 |
|
|
lipidSites[i].pos[1] = drand48() * box_y; |
338 |
|
|
lipidSites[i].pos[2] = drand48() * box_z; |
339 |
chuckv |
700 |
|
340 |
chuckv |
678 |
getRandomRot( lipidSites[i].rot ); |
341 |
chuckv |
700 |
|
342 |
chuckv |
678 |
ndx = i * lipidNatoms; |
343 |
|
|
|
344 |
|
|
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
345 |
chuckv |
700 |
ndx, theConfig ); |
346 |
|
|
|
347 |
chuckv |
678 |
reject = 0; |
348 |
|
|
for( j=0; !reject && j<i; j++){ |
349 |
|
|
for(k=0; !reject && k<lipidNatoms; k++){ |
350 |
|
|
|
351 |
|
|
acceptedDX = j*lipidNatoms + k; |
352 |
|
|
for(l=0; !reject && l<lipidNatoms; l++){ |
353 |
chuckv |
700 |
|
354 |
chuckv |
678 |
testDX = ndx + l; |
355 |
|
|
|
356 |
chuckv |
700 |
atoms[testDX]->getPos( posA ); |
357 |
|
|
atoms[acceptedDX]->getPos( posB ); |
358 |
chuckv |
678 |
|
359 |
chuckv |
700 |
dx = posA[0] - posB[0]; |
360 |
|
|
dy = posA[1] - posB[1]; |
361 |
|
|
dz = posA[2] - posB[2]; |
362 |
|
|
|
363 |
chuckv |
678 |
buildMap( dx, dy, dz, box_x, box_y, box_z ); |
364 |
chuckv |
700 |
|
365 |
chuckv |
678 |
dx2 = dx * dx; |
366 |
|
|
dy2 = dy * dy; |
367 |
|
|
dz2 = dz * dz; |
368 |
chuckv |
700 |
|
369 |
chuckv |
678 |
dSqr = dx2 + dy2 + dz2; |
370 |
|
|
if( dSqr < rCutSqr ) reject = 1; |
371 |
|
|
} |
372 |
|
|
} |
373 |
|
|
} |
374 |
|
|
|
375 |
|
|
if( reject ){ |
376 |
|
|
|
377 |
|
|
for(j=0; j< lipidNatoms; j++) delete atoms[ndx+j]; |
378 |
|
|
} |
379 |
|
|
else{ |
380 |
|
|
done = 1; |
381 |
chuckv |
700 |
std::cout << (i+1) << " has been accepted\n"; |
382 |
chuckv |
678 |
} |
383 |
|
|
} |
384 |
|
|
} |
385 |
|
|
|
386 |
mmeineke |
707 |
|
387 |
|
|
// zSort of the lipid positions |
388 |
|
|
|
389 |
|
|
|
390 |
|
|
vector< pair<int,double> >zSortArray; |
391 |
|
|
for(i=0;i<nLipids;i++) |
392 |
|
|
zSortArray.push_back( make_pair(i, lipidSites[i].pos[2]) ); |
393 |
|
|
|
394 |
|
|
sort(zSortArray.begin(),zSortArray.end(),SortCond()); |
395 |
|
|
|
396 |
mmeineke |
724 |
ofstream outFile( "./zipper.bass", ios::app); |
397 |
mmeineke |
707 |
|
398 |
|
|
for(i=0; i<nLipids; i++){ |
399 |
|
|
outFile << "zConstraint[" << i << "]{\n" |
400 |
|
|
<< " molIndex = " << zSortArray[i].first << ";\n" |
401 |
|
|
<< " zPos = "; |
402 |
|
|
|
403 |
|
|
if(i<32) outFile << "60.0;\n"; |
404 |
|
|
else outFile << "100.0;\n"; |
405 |
|
|
|
406 |
|
|
outFile << " kRatio = 0.5;\n" |
407 |
|
|
<< "}\n"; |
408 |
|
|
} |
409 |
|
|
|
410 |
|
|
outFile.close(); |
411 |
|
|
|
412 |
|
|
|
413 |
chuckv |
678 |
// cut out the waters that overlap with the lipids. |
414 |
|
|
|
415 |
chuckv |
700 |
|
416 |
chuckv |
678 |
delete[] isActive; |
417 |
|
|
isActive = new int[newWaters]; |
418 |
|
|
for(i=0; i<newWaters; i++) isActive[i] = 1; |
419 |
|
|
int n_active = newWaters; |
420 |
|
|
rCutSqr = water_padding * water_padding; |
421 |
|
|
|
422 |
|
|
for(i=0; ( (i<newWaters) && isActive[i] ); i++){ |
423 |
|
|
for(j=0; ( (j<nAtoms) && isActive[i] ); j++){ |
424 |
|
|
|
425 |
chuckv |
700 |
atoms[j]->getPos( pos ); |
426 |
chuckv |
678 |
|
427 |
chuckv |
700 |
dx = waterSites[i].pos[0] - pos[0]; |
428 |
|
|
dy = waterSites[i].pos[1] - pos[1]; |
429 |
|
|
dz = waterSites[i].pos[2] - pos[2]; |
430 |
|
|
|
431 |
chuckv |
678 |
buildMap( dx, dy, dz, box_x, box_y, box_z ); |
432 |
|
|
|
433 |
|
|
dx2 = dx * dx; |
434 |
|
|
dy2 = dy * dy; |
435 |
|
|
dz2 = dz * dz; |
436 |
chuckv |
700 |
|
437 |
chuckv |
678 |
dSqr = dx2 + dy2 + dz2; |
438 |
|
|
if( dSqr < rCutSqr ){ |
439 |
|
|
isActive[i] = 0; |
440 |
|
|
n_active--; |
441 |
chuckv |
700 |
|
442 |
|
|
|
443 |
chuckv |
678 |
} |
444 |
|
|
} |
445 |
|
|
} |
446 |
|
|
|
447 |
chuckv |
700 |
|
448 |
|
|
|
449 |
|
|
|
450 |
chuckv |
678 |
if( n_active < nWaters ){ |
451 |
chuckv |
700 |
|
452 |
chuckv |
678 |
sprintf( painCave.errMsg, |
453 |
|
|
"Too many waters were removed, edit code and try again.\n" ); |
454 |
chuckv |
700 |
|
455 |
chuckv |
678 |
painCave.isFatal = 1; |
456 |
|
|
simError(); |
457 |
|
|
} |
458 |
|
|
|
459 |
|
|
int quickKill; |
460 |
|
|
while( n_active > nWaters ){ |
461 |
|
|
|
462 |
|
|
quickKill = (int)(drand48()*newWaters); |
463 |
|
|
|
464 |
|
|
if( isActive[quickKill] ){ |
465 |
|
|
isActive[quickKill] = 0; |
466 |
|
|
n_active--; |
467 |
chuckv |
700 |
|
468 |
chuckv |
678 |
} |
469 |
|
|
} |
470 |
|
|
|
471 |
|
|
if( n_active != nWaters ){ |
472 |
chuckv |
700 |
|
473 |
chuckv |
678 |
sprintf( painCave.errMsg, |
474 |
|
|
"QuickKill didn't work right. n_active = %d, and nWaters = %d\n", |
475 |
|
|
n_active, nWaters ); |
476 |
|
|
painCave.isFatal = 1; |
477 |
|
|
simError(); |
478 |
|
|
} |
479 |
|
|
|
480 |
|
|
// clean up our messes before building the final system. |
481 |
|
|
|
482 |
chuckv |
700 |
simnfo[0].getConfiguration()->destroyArrays(); |
483 |
|
|
simnfo[1].getConfiguration()->destroyArrays(); |
484 |
chuckv |
678 |
|
485 |
|
|
// create the real Atom arrays |
486 |
|
|
|
487 |
|
|
nAtoms = 0; |
488 |
|
|
molIndex = 0; |
489 |
|
|
molStart = new int[nLipids + nWaters]; |
490 |
|
|
|
491 |
|
|
for(j=0; j<nLipids; j++){ |
492 |
|
|
molStart[molIndex] = nAtoms; |
493 |
|
|
molIndex++; |
494 |
|
|
nAtoms += lipidNatoms; |
495 |
|
|
} |
496 |
|
|
|
497 |
|
|
for(j=0; j<nWaters; j++){ |
498 |
|
|
molStart[molIndex] = nAtoms; |
499 |
|
|
molIndex++; |
500 |
|
|
nAtoms += waterNatoms; |
501 |
|
|
} |
502 |
|
|
|
503 |
chuckv |
700 |
theConfig = simnfo[2].getConfiguration(); |
504 |
|
|
theConfig->createArrays( nAtoms ); |
505 |
|
|
simnfo[2].atoms = new Atom*[nAtoms]; |
506 |
|
|
atoms = simnfo[2].atoms; |
507 |
|
|
simnfo[2].n_atoms = nAtoms; |
508 |
chuckv |
678 |
|
509 |
|
|
// initialize lipid positions |
510 |
|
|
|
511 |
|
|
molIndex = 0; |
512 |
|
|
for(i=0; i<nLipids; i++ ){ |
513 |
|
|
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
514 |
chuckv |
700 |
molStart[molIndex], theConfig ); |
515 |
chuckv |
678 |
molIndex++; |
516 |
|
|
} |
517 |
|
|
|
518 |
|
|
// initialize the water positions |
519 |
|
|
|
520 |
|
|
for(i=0; i<newWaters; i++){ |
521 |
chuckv |
700 |
|
522 |
chuckv |
678 |
if( isActive[i] ){ |
523 |
chuckv |
700 |
|
524 |
chuckv |
678 |
getRandomRot( waterSites[i].rot ); |
525 |
|
|
waterLocate->placeMol( waterSites[i].pos, waterSites[i].rot, atoms, |
526 |
chuckv |
700 |
molStart[molIndex], theConfig ); |
527 |
chuckv |
678 |
molIndex++; |
528 |
|
|
} |
529 |
|
|
} |
530 |
|
|
|
531 |
|
|
// set up the SimInfo object |
532 |
|
|
|
533 |
chuckv |
700 |
double Hmat[3][3]; |
534 |
|
|
|
535 |
|
|
Hmat[0][0] = box_x; |
536 |
|
|
Hmat[0][1] = 0.0; |
537 |
|
|
Hmat[0][2] = 0.0; |
538 |
|
|
|
539 |
|
|
Hmat[1][0] = 0.0; |
540 |
|
|
Hmat[1][1] = box_y; |
541 |
|
|
Hmat[1][2] = 0.0; |
542 |
|
|
|
543 |
|
|
Hmat[2][0] = 0.0; |
544 |
|
|
Hmat[2][1] = 0.0; |
545 |
|
|
Hmat[2][2] = box_z; |
546 |
|
|
|
547 |
|
|
|
548 |
chuckv |
678 |
bsInfo.boxX = box_x; |
549 |
|
|
bsInfo.boxY = box_y; |
550 |
|
|
bsInfo.boxZ = box_z; |
551 |
|
|
|
552 |
chuckv |
700 |
simnfo[2].setBoxM( Hmat ); |
553 |
chuckv |
678 |
|
554 |
chuckv |
700 |
sprintf( simnfo[2].sampleName, "%s.dump", bsInfo.outPrefix ); |
555 |
|
|
sprintf( simnfo[2].finalName, "%s.init", bsInfo.outPrefix ); |
556 |
chuckv |
678 |
|
557 |
|
|
// set up the writer and write out |
558 |
|
|
|
559 |
chuckv |
700 |
writer = new DumpWriter( &simnfo[2] ); |
560 |
chuckv |
678 |
writer->writeFinal( 0.0 ); |
561 |
|
|
|
562 |
|
|
// clean up the memory |
563 |
|
|
|
564 |
chuckv |
700 |
// if( molMap != NULL ) delete[] molMap; |
565 |
|
|
// if( cardDeck != NULL ) delete[] cardDeck; |
566 |
|
|
// if( locate != NULL ){ |
567 |
|
|
// for(i=0; i<bsInfo.nComponents; i++){ |
568 |
|
|
// delete locate[i]; |
569 |
|
|
// } |
570 |
|
|
// delete[] locate; |
571 |
|
|
// } |
572 |
|
|
// if( atoms != NULL ){ |
573 |
|
|
// for(i=0; i<nAtoms; i++){ |
574 |
|
|
// delete atoms[i]; |
575 |
|
|
// } |
576 |
|
|
// Atom::destroyArrays(); |
577 |
|
|
// delete[] atoms; |
578 |
|
|
// } |
579 |
|
|
// if( molSeq != NULL ) delete[] molSeq; |
580 |
|
|
// if( simnfo != NULL ) delete simnfo; |
581 |
|
|
// if( writer != NULL ) delete writer; |
582 |
chuckv |
678 |
|
583 |
|
|
return 1; |
584 |
|
|
} |
585 |
|
|
|
586 |
gezelter |
817 |
int buildLatticeBilayer(int isHexLattice, |
587 |
|
|
double hexSpacing, |
588 |
|
|
double aLat, |
589 |
|
|
double bLat, |
590 |
|
|
int targetNlipid, |
591 |
|
|
double targetWaterLipidRatio, |
592 |
|
|
double leafSpacing){ |
593 |
|
|
|
594 |
|
|
typedef struct{ |
595 |
|
|
double rot[3][3]; |
596 |
|
|
double pos[3]; |
597 |
|
|
} coord; |
598 |
|
|
|
599 |
|
|
const double waterRho = 0.0334; // number density per cubic angstrom |
600 |
|
|
const double waterVol = 4.0 / waterRho; // volume occupied by 4 waters |
601 |
|
|
|
602 |
|
|
double waterCell[3]; |
603 |
|
|
|
604 |
|
|
double *posX, *posY, *posZ; |
605 |
|
|
double pos[3], posA[3], posB[3]; |
606 |
|
|
|
607 |
|
|
const double waterFudge = 5.0; |
608 |
|
|
|
609 |
|
|
int i,j,k,l; |
610 |
|
|
int nAtoms, atomIndex, molIndex, molID; |
611 |
|
|
int* molSeq; |
612 |
|
|
int* molMap; |
613 |
|
|
int* molStart; |
614 |
|
|
int testTot, done; |
615 |
|
|
int nCells, nCellsX, nCellsY, nCellsZ; |
616 |
|
|
int nx, ny; |
617 |
|
|
double boxX, boxY, boxZ; |
618 |
|
|
double unitVector[3]; |
619 |
|
|
int which; |
620 |
|
|
int targetWaters; |
621 |
|
|
|
622 |
|
|
|
623 |
|
|
|
624 |
|
|
coord testSite; |
625 |
|
|
|
626 |
|
|
Atom** atoms; |
627 |
|
|
SimInfo* simnfo; |
628 |
|
|
SimState* theConfig; |
629 |
|
|
DumpWriter* writer; |
630 |
|
|
|
631 |
|
|
MoleculeStamp* lipidStamp; |
632 |
|
|
MoleculeStamp* waterStamp; |
633 |
|
|
MoLocator *lipidLocate; |
634 |
|
|
MoLocator *waterLocate; |
635 |
|
|
int foundLipid, foundWater; |
636 |
|
|
int nLipids, lipidNatoms, nWaters, waterNatoms; |
637 |
|
|
|
638 |
|
|
srand48( RAND_SEED ); |
639 |
|
|
|
640 |
|
|
// create the simInfo objects |
641 |
|
|
|
642 |
|
|
simnfo = new SimInfo; |
643 |
|
|
|
644 |
|
|
// set the the lipidStamp |
645 |
|
|
|
646 |
|
|
foundLipid = 0; |
647 |
|
|
foundWater = 0; |
648 |
|
|
for(i=0; i<bsInfo.nComponents; i++){ |
649 |
|
|
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ |
650 |
|
|
|
651 |
|
|
foundLipid = 1; |
652 |
|
|
lipidStamp = bsInfo.compStamps[i]; |
653 |
|
|
nLipids = bsInfo.componentsNmol[i]; |
654 |
|
|
lipidNatoms = lipidStamp->getNAtoms(); |
655 |
|
|
} |
656 |
|
|
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ |
657 |
|
|
|
658 |
|
|
foundWater = 1; |
659 |
|
|
|
660 |
|
|
waterStamp = bsInfo.compStamps[i]; |
661 |
|
|
nWaters = bsInfo.componentsNmol[i]; |
662 |
|
|
waterNatoms = waterStamp->getNAtoms(); |
663 |
|
|
} |
664 |
|
|
} |
665 |
|
|
if( !foundLipid ){ |
666 |
|
|
sprintf(painCave.errMsg, |
667 |
|
|
"Could not find lipid \"%s\" in the bass file.\n", |
668 |
|
|
bsInfo.lipidName ); |
669 |
|
|
painCave.isFatal = 1; |
670 |
|
|
simError(); |
671 |
|
|
} |
672 |
|
|
if( !foundWater ){ |
673 |
|
|
sprintf(painCave.errMsg, |
674 |
|
|
"Could not find solvent \"%s\" in the bass file.\n", |
675 |
|
|
bsInfo.waterName ); |
676 |
|
|
painCave.isFatal = 1; |
677 |
|
|
simError(); |
678 |
|
|
} |
679 |
|
|
|
680 |
|
|
//create the Molocator arrays |
681 |
|
|
|
682 |
|
|
lipidLocate = new MoLocator( lipidStamp ); |
683 |
|
|
waterLocate = new MoLocator( waterStamp ); |
684 |
|
|
|
685 |
|
|
|
686 |
|
|
// set up the bilayer leaves |
687 |
|
|
|
688 |
|
|
if (isHexLattice) { |
689 |
|
|
aLat = sqrt(3.0)*hexSpacing; |
690 |
|
|
bLat = hexSpacing; |
691 |
|
|
} |
692 |
|
|
|
693 |
|
|
nCells = (int) sqrt( (double)targetNlipid * bLat / (4.0 * aLat) ); |
694 |
|
|
|
695 |
|
|
nx = nCells; |
696 |
|
|
ny = (int) ((double)nCells * aLat / bLat); |
697 |
|
|
|
698 |
|
|
boxX = nx * aLat; |
699 |
|
|
boxY = ny * bLat; |
700 |
|
|
|
701 |
|
|
nLipids = 4 * nx * ny; |
702 |
|
|
coord* lipidSites = new coord[nLipids]; |
703 |
|
|
|
704 |
|
|
unitVector[0] = 0.0; |
705 |
|
|
unitVector[1] = 0.0; |
706 |
|
|
|
707 |
|
|
which = 0; |
708 |
|
|
|
709 |
|
|
for (i = 0; i < nx; i++) { |
710 |
|
|
for (j = 0; j < ny; j++ ) { |
711 |
|
|
for (k = 0; k < 2; k++) { |
712 |
|
|
|
713 |
|
|
lipidSites[which].pos[0] = (double)i * aLat; |
714 |
|
|
lipidSites[which].pos[1] = (double)j * bLat; |
715 |
|
|
lipidSites[which].pos[2] = ((double)k - 0.5) * (leafSpacing / 2.0); |
716 |
|
|
|
717 |
|
|
unitVector[2] = 2.0 * (double)k - 1.0; |
718 |
|
|
|
719 |
|
|
getUnitRot( unitVector, lipidSites[which].rot ); |
720 |
|
|
|
721 |
|
|
which++; |
722 |
|
|
|
723 |
|
|
lipidSites[which].pos[0] = aLat * ((double)i + 0.5); |
724 |
|
|
lipidSites[which].pos[1] = bLat * ((double)j + 0.5); |
725 |
|
|
lipidSites[which].pos[2] = ((double)k - 0.5) * (leafSpacing / 2.0); |
726 |
|
|
|
727 |
|
|
unitVector[2] = 2.0 * (double)k - 1.0; |
728 |
|
|
|
729 |
|
|
getUnitRot( unitVector, lipidSites[which].rot ); |
730 |
|
|
|
731 |
|
|
which++; |
732 |
|
|
} |
733 |
|
|
} |
734 |
|
|
} |
735 |
|
|
|
736 |
|
|
targetWaters = targetWaterLipidRatio * nLipids; |
737 |
|
|
|
738 |
|
|
// guess the size of the water box |
739 |
|
|
|
740 |
|
|
|
741 |
|
|
|
742 |
|
|
nCellsX = (int)ceil(boxX / pow(waterVol, ( 1.0 / 3.0 )) ); |
743 |
|
|
nCellsY = (int)ceil(boxY / pow(waterVol, ( 1.0 / 3.0 )) ); |
744 |
|
|
|
745 |
|
|
done = 0; |
746 |
|
|
nCellsZ = 0; |
747 |
|
|
while( !done ){ |
748 |
|
|
|
749 |
|
|
nCellsZ++; |
750 |
|
|
testTot = 4 * nCellsX * nCellsY * nCellsZ; |
751 |
|
|
|
752 |
|
|
if( testTot >= targetWaters ) done = 1; |
753 |
|
|
} |
754 |
|
|
|
755 |
|
|
nWaters = nCellsX * nCellsY * nCellsZ * 4; |
756 |
|
|
|
757 |
|
|
coord* waterSites = new coord[nWaters]; |
758 |
|
|
|
759 |
|
|
waterCell[0] = boxX / nCellsX; |
760 |
|
|
waterCell[1] = boxY / nCellsY; |
761 |
|
|
waterCell[2] = 4.0 / (waterRho * waterCell[0] * waterCell[1]); |
762 |
|
|
|
763 |
|
|
Lattice *myORTHO; |
764 |
|
|
myORTHO = new Lattice( ORTHORHOMBIC_LATTICE_TYPE, waterCell); |
765 |
|
|
myORTHO->setStartZ( leafSpacing / 2.0 + waterFudge); |
766 |
|
|
|
767 |
|
|
boxZ = waterCell[2] * nCellsZ; |
768 |
|
|
|
769 |
|
|
// create an fcc lattice in the water box. |
770 |
|
|
|
771 |
|
|
which = 0; |
772 |
|
|
for( i=0; i < nCellsX; i++ ){ |
773 |
|
|
for( j=0; j < nCellsY; j++ ){ |
774 |
|
|
for( k=0; k < nCellsZ; k++ ){ |
775 |
|
|
|
776 |
|
|
myORTHO->getLatticePoints(&posX, &posY, &posZ, i, j, k); |
777 |
|
|
for(l=0; l<4; l++){ |
778 |
|
|
waterSites[which].pos[0] = posX[l]; |
779 |
|
|
waterSites[which].pos[1] = posY[l]; |
780 |
|
|
waterSites[which].pos[2] = posZ[l]; |
781 |
|
|
which++; |
782 |
|
|
} |
783 |
|
|
} |
784 |
|
|
} |
785 |
|
|
} |
786 |
|
|
|
787 |
|
|
// create the real Atom arrays |
788 |
|
|
|
789 |
|
|
nAtoms = 0; |
790 |
|
|
molIndex = 0; |
791 |
|
|
molStart = new int[nLipids + nWaters]; |
792 |
|
|
|
793 |
|
|
for(j=0; j<nLipids; j++){ |
794 |
|
|
molStart[molIndex] = nAtoms; |
795 |
|
|
molIndex++; |
796 |
|
|
nAtoms += lipidNatoms; |
797 |
|
|
} |
798 |
|
|
|
799 |
|
|
for(j=0; j<nWaters; j++){ |
800 |
|
|
molStart[molIndex] = nAtoms; |
801 |
|
|
molIndex++; |
802 |
|
|
nAtoms += waterNatoms; |
803 |
|
|
} |
804 |
|
|
|
805 |
|
|
theConfig = simnfo->getConfiguration(); |
806 |
|
|
theConfig->createArrays( nAtoms ); |
807 |
|
|
simnfo->atoms = new Atom*[nAtoms]; |
808 |
|
|
atoms = simnfo->atoms; |
809 |
|
|
|
810 |
|
|
// initialize lipid positions |
811 |
|
|
|
812 |
|
|
molIndex = 0; |
813 |
|
|
for(i=0; i<nLipids; i++ ){ |
814 |
|
|
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
815 |
|
|
molStart[molIndex], theConfig ); |
816 |
|
|
molIndex++; |
817 |
|
|
} |
818 |
|
|
|
819 |
|
|
// initialize the water positions |
820 |
|
|
|
821 |
|
|
for(i=0; i<nWaters; i++){ |
822 |
|
|
|
823 |
|
|
getRandomRot( waterSites[i].rot ); |
824 |
|
|
waterLocate->placeMol( waterSites[i].pos, waterSites[i].rot, atoms, |
825 |
|
|
molStart[molIndex], theConfig ); |
826 |
|
|
molIndex++; |
827 |
|
|
} |
828 |
|
|
|
829 |
|
|
// set up the SimInfo object |
830 |
|
|
|
831 |
|
|
double Hmat[3][3]; |
832 |
|
|
|
833 |
|
|
Hmat[0][0] = boxX; |
834 |
|
|
Hmat[0][1] = 0.0; |
835 |
|
|
Hmat[0][2] = 0.0; |
836 |
|
|
|
837 |
|
|
Hmat[1][0] = 0.0; |
838 |
|
|
Hmat[1][1] = boxY; |
839 |
|
|
Hmat[1][2] = 0.0; |
840 |
|
|
|
841 |
|
|
Hmat[2][0] = 0.0; |
842 |
|
|
Hmat[2][1] = 0.0; |
843 |
|
|
Hmat[2][2] = boxZ; |
844 |
|
|
|
845 |
|
|
|
846 |
|
|
bsInfo.boxX = boxX; |
847 |
|
|
bsInfo.boxY = boxY; |
848 |
|
|
bsInfo.boxZ = boxZ; |
849 |
|
|
|
850 |
|
|
simnfo->setBoxM( Hmat ); |
851 |
|
|
|
852 |
|
|
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
853 |
|
|
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
854 |
|
|
|
855 |
|
|
// set up the writer and write out |
856 |
|
|
|
857 |
|
|
writer = new DumpWriter( simnfo ); |
858 |
|
|
writer->writeFinal( 0.0 ); |
859 |
|
|
|
860 |
|
|
return 1; |
861 |
|
|
} |
862 |
|
|
|
863 |
|
|
|
864 |
chuckv |
678 |
void getRandomRot( double rot[3][3] ){ |
865 |
|
|
|
866 |
|
|
double theta, phi, psi; |
867 |
|
|
double cosTheta; |
868 |
|
|
|
869 |
|
|
// select random phi, psi, and cosTheta |
870 |
|
|
|
871 |
|
|
phi = 2.0 * M_PI * drand48(); |
872 |
|
|
psi = 2.0 * M_PI * drand48(); |
873 |
|
|
cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 |
874 |
|
|
|
875 |
|
|
theta = acos( cosTheta ); |
876 |
|
|
|
877 |
gezelter |
817 |
getEulerRot( theta, phi, psi, rot ); |
878 |
|
|
} |
879 |
|
|
|
880 |
|
|
|
881 |
|
|
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ){ |
882 |
|
|
|
883 |
chuckv |
678 |
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
884 |
|
|
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
885 |
|
|
rot[0][2] = sin(theta) * sin(psi); |
886 |
|
|
|
887 |
|
|
rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
888 |
|
|
rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
889 |
|
|
rot[1][2] = sin(theta) * cos(psi); |
890 |
|
|
|
891 |
|
|
rot[2][0] = sin(phi) * sin(theta); |
892 |
|
|
rot[2][1] = -cos(phi) * sin(theta); |
893 |
|
|
rot[2][2] = cos(theta); |
894 |
|
|
} |
895 |
gezelter |
817 |
|
896 |
|
|
|
897 |
|
|
void getUnitRot( double u[3], double rot[3][3] ){ |
898 |
|
|
|
899 |
|
|
double theta, phi, psi; |
900 |
|
|
|
901 |
|
|
theta = acos(u[2]); |
902 |
|
|
phi = atan(u[1] / u[0]); |
903 |
|
|
psi = 0.0; |
904 |
|
|
|
905 |
|
|
getEulerRot( theta, phi, psi, rot ); |
906 |
|
|
} |
907 |
chuckv |
678 |
|
908 |
|
|
|
909 |
|
|
|
910 |
|
|
void buildMap( double &x, double &y, double &z, |
911 |
chuckv |
700 |
double boxX, double boxY, double boxZ ){ |
912 |
chuckv |
678 |
|
913 |
|
|
if(x < 0) x -= boxX * (double)( (int)( (x / boxX) - 0.5 ) ); |
914 |
|
|
else x -= boxX * (double)( (int)( (x / boxX ) + 0.5)); |
915 |
|
|
|
916 |
|
|
if(y < 0) y -= boxY * (double)( (int)( (y / boxY) - 0.5 ) ); |
917 |
|
|
else y -= boxY * (double)( (int)( (y / boxY ) + 0.5)); |
918 |
|
|
|
919 |
|
|
if(z < 0) z -= boxZ * (double)( (int)( (z / boxZ) - 0.5 ) ); |
920 |
|
|
else z -= boxZ * (double)( (int)( (z / boxZ ) + 0.5)); |
921 |
|
|
} |