| 1 |
#include <iostream> |
| 2 |
|
| 3 |
#include <cstdlib> |
| 4 |
#include <cmath> |
| 5 |
|
| 6 |
#include "simError.h" |
| 7 |
|
| 8 |
#include "MoLocator.hpp" |
| 9 |
|
| 10 |
|
| 11 |
MoLocator::MoLocator( MoleculeStamp* theStamp ){ |
| 12 |
|
| 13 |
myStamp = theStamp; |
| 14 |
nAtoms = myStamp->getNAtoms(); |
| 15 |
|
| 16 |
myCoords = NULL; |
| 17 |
|
| 18 |
calcRefCoords(); |
| 19 |
} |
| 20 |
|
| 21 |
MoLocator::~MoLocator(){ |
| 22 |
|
| 23 |
if( myCoords != NULL ) delete[] myCoords; |
| 24 |
} |
| 25 |
|
| 26 |
void MoLocator::placeMol( double pos[3], double A[3][3], Atom** atomArray, |
| 27 |
int atomIndex, SimState* myConfig ){ |
| 28 |
|
| 29 |
int i,j,k; |
| 30 |
double r[3]; |
| 31 |
double ux, uy, uz, u, uSqr; |
| 32 |
|
| 33 |
AtomStamp* currAtom; |
| 34 |
DirectionalAtom* dAtom; |
| 35 |
double vel[3]; |
| 36 |
for(i=0;i<3;i++)vel[i]=0.0; |
| 37 |
|
| 38 |
for(i=0; i<nAtoms; i++){ |
| 39 |
|
| 40 |
currAtom = myStamp->getAtom( i ); |
| 41 |
j = atomIndex+i; |
| 42 |
|
| 43 |
if( currAtom->haveOrientation()){ |
| 44 |
|
| 45 |
dAtom = new DirectionalAtom( j, myConfig); |
| 46 |
atomArray[j] = dAtom; |
| 47 |
atomArray[j]->setCoords(); |
| 48 |
|
| 49 |
ux = currAtom->getOrntX(); |
| 50 |
uy = currAtom->getOrntY(); |
| 51 |
uz = currAtom->getOrntZ(); |
| 52 |
|
| 53 |
uSqr = (ux * ux) + (uy * uy) + (uz * uz); |
| 54 |
|
| 55 |
u = sqrt( uSqr ); |
| 56 |
ux = ux / u; |
| 57 |
uy = uy / u; |
| 58 |
uz = uz / u; |
| 59 |
|
| 60 |
dAtom->setSUx( ux ); |
| 61 |
dAtom->setSUy( uy ); |
| 62 |
dAtom->setSUz( uz ); |
| 63 |
|
| 64 |
dAtom->setA( A ); |
| 65 |
|
| 66 |
dAtom->setJx( 0.0 ); |
| 67 |
dAtom->setJy( 0.0 ); |
| 68 |
dAtom->setJz( 0.0 ); |
| 69 |
|
| 70 |
} |
| 71 |
else{ |
| 72 |
atomArray[j] = new GeneralAtom( j, myConfig); |
| 73 |
atomArray[j]->setCoords(); |
| 74 |
} |
| 75 |
|
| 76 |
atomArray[j]->setType( currAtom->getType() ); |
| 77 |
|
| 78 |
for(k=0; k<3; k++) r[k] = myCoords[(i*3)+k]; |
| 79 |
|
| 80 |
rotMe( r, A ); |
| 81 |
|
| 82 |
for(k=0; k<3; k++) r[k] += pos[k]; |
| 83 |
|
| 84 |
atomArray[j]->setPos( r ); |
| 85 |
|
| 86 |
atomArray[j]->setVel( vel );; |
| 87 |
} |
| 88 |
} |
| 89 |
|
| 90 |
void MoLocator::calcRefCoords( void ){ |
| 91 |
|
| 92 |
int i,j,k; |
| 93 |
AtomStamp* currAtom; |
| 94 |
double centerX, centerY, centerZ; |
| 95 |
double smallX, smallY, smallZ; |
| 96 |
double bigX, bigY, bigZ; |
| 97 |
double dx, dy, dz; |
| 98 |
double dsqr; |
| 99 |
|
| 100 |
|
| 101 |
centerX = 0.0; |
| 102 |
centerY = 0.0; |
| 103 |
centerZ = 0.0; |
| 104 |
|
| 105 |
for(i=0; i<nAtoms; i++){ |
| 106 |
|
| 107 |
currAtom = myStamp->getAtom(i); |
| 108 |
if( !currAtom->havePosition() ){ |
| 109 |
sprintf( painCave.errMsg, |
| 110 |
"MoLocator error.\n" |
| 111 |
" Component %s, atom %s does not have a position specified.\n" |
| 112 |
" This means MoLocator cannot initalize it's position.\n", |
| 113 |
myStamp->getID(), |
| 114 |
currAtom->getType() ); |
| 115 |
painCave.isFatal = 1; |
| 116 |
simError(); |
| 117 |
} |
| 118 |
|
| 119 |
|
| 120 |
centerX += currAtom->getPosX(); |
| 121 |
centerY += currAtom->getPosY(); |
| 122 |
centerZ += currAtom->getPosZ(); |
| 123 |
} |
| 124 |
|
| 125 |
centerX /= nAtoms; |
| 126 |
centerY /= nAtoms; |
| 127 |
centerZ /= nAtoms; |
| 128 |
|
| 129 |
myCoords = new double[nAtoms*3]; |
| 130 |
|
| 131 |
j = 0; |
| 132 |
for(i=0; i<nAtoms; i++){ |
| 133 |
|
| 134 |
currAtom = myStamp->getAtom(i); |
| 135 |
j = i*3; |
| 136 |
|
| 137 |
myCoords[j] = currAtom->getPosX() - centerX; |
| 138 |
myCoords[j+1] = currAtom->getPosY() - centerY; |
| 139 |
myCoords[j+2] = currAtom->getPosZ() - centerZ; |
| 140 |
} |
| 141 |
|
| 142 |
smallX = myCoords[0]; |
| 143 |
smallY = myCoords[1]; |
| 144 |
smallZ = myCoords[2]; |
| 145 |
|
| 146 |
bigX = myCoords[0]; |
| 147 |
bigY = myCoords[1]; |
| 148 |
bigZ = myCoords[2]; |
| 149 |
|
| 150 |
j=0; |
| 151 |
for(i=1; i<nAtoms; i++){ |
| 152 |
j= i*3; |
| 153 |
|
| 154 |
if( myCoords[j] < smallX ) smallX = myCoords[j]; |
| 155 |
if( myCoords[j+1] < smallY ) smallY = myCoords[j+1]; |
| 156 |
if( myCoords[j+2] < smallZ ) smallZ = myCoords[j+2]; |
| 157 |
|
| 158 |
if( myCoords[j] > bigX ) bigX = myCoords[j]; |
| 159 |
if( myCoords[j+1] > bigY ) bigY = myCoords[j+1]; |
| 160 |
if( myCoords[j+2] > bigZ ) bigZ = myCoords[j+2]; |
| 161 |
} |
| 162 |
|
| 163 |
|
| 164 |
dx = bigX - smallX; |
| 165 |
dy = bigY - smallY; |
| 166 |
dz = bigZ - smallZ; |
| 167 |
|
| 168 |
dsqr = (dx * dx) + (dy * dy) + (dz * dz); |
| 169 |
maxLength = sqrt( dsqr ); |
| 170 |
} |
| 171 |
|
| 172 |
void MoLocator::rotMe( double r[3], double A[3][3] ){ |
| 173 |
|
| 174 |
double rt[3]; |
| 175 |
int i,j; |
| 176 |
|
| 177 |
for(i=0; i<3; i++) rt[i] = r[i]; |
| 178 |
|
| 179 |
for(i=0; i<3; i++){ |
| 180 |
r[i] = 0.0; |
| 181 |
for(j=0; j<3; j++){ |
| 182 |
r[i] += A[i][j] * rt[j]; |
| 183 |
} |
| 184 |
} |
| 185 |
} |
| 186 |
|
| 187 |
void getRandomRot( double rot[3][3] ){ |
| 188 |
|
| 189 |
double theta, phi, psi; |
| 190 |
double cosTheta; |
| 191 |
|
| 192 |
// select random phi, psi, and cosTheta |
| 193 |
|
| 194 |
phi = 2.0 * M_PI * drand48(); |
| 195 |
psi = 2.0 * M_PI * drand48(); |
| 196 |
cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 |
| 197 |
|
| 198 |
theta = acos( cosTheta ); |
| 199 |
|
| 200 |
getEulerRot( theta, phi, psi, rot ); |
| 201 |
} |
| 202 |
|
| 203 |
|
| 204 |
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ){ |
| 205 |
|
| 206 |
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
| 207 |
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
| 208 |
rot[0][2] = sin(theta) * sin(psi); |
| 209 |
|
| 210 |
rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
| 211 |
rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
| 212 |
rot[1][2] = sin(theta) * cos(psi); |
| 213 |
|
| 214 |
rot[2][0] = sin(phi) * sin(theta); |
| 215 |
rot[2][1] = -cos(phi) * sin(theta); |
| 216 |
rot[2][2] = cos(theta); |
| 217 |
} |
| 218 |
|
| 219 |
|
| 220 |
void getUnitRot( double u[3], double rot[3][3] ){ |
| 221 |
|
| 222 |
double theta, phi, psi; |
| 223 |
|
| 224 |
theta = acos(u[2]); |
| 225 |
phi = atan(u[1] / u[0]); |
| 226 |
psi = 0.0; |
| 227 |
|
| 228 |
getEulerRot( theta, phi, psi, rot ); |
| 229 |
} |
| 230 |
|
| 231 |
|