1 |
#include <iostream> |
2 |
|
3 |
#include <cstdlib> |
4 |
#include <cmath> |
5 |
|
6 |
#include "simError.h" |
7 |
|
8 |
#include "MoLocator.hpp" |
9 |
|
10 |
|
11 |
MoLocator::MoLocator( MoleculeStamp* theStamp ){ |
12 |
|
13 |
myStamp = theStamp; |
14 |
nAtoms = myStamp->getNAtoms(); |
15 |
|
16 |
myCoords = NULL; |
17 |
|
18 |
calcRefCoords(); |
19 |
} |
20 |
|
21 |
MoLocator::~MoLocator(){ |
22 |
|
23 |
if( myCoords != NULL ) delete[] myCoords; |
24 |
} |
25 |
|
26 |
void MoLocator::placeMol( double pos[3], double A[3][3], Atom** atomArray, |
27 |
int atomIndex, SimState* myConfig ){ |
28 |
|
29 |
int i,j,k; |
30 |
double r[3]; |
31 |
double ux, uy, uz, u, uSqr; |
32 |
|
33 |
AtomStamp* currAtom; |
34 |
DirectionalAtom* dAtom; |
35 |
double vel[3]; |
36 |
for(i=0;i<3;i++)vel[i]=0.0; |
37 |
|
38 |
for(i=0; i<nAtoms; i++){ |
39 |
|
40 |
currAtom = myStamp->getAtom( i ); |
41 |
j = atomIndex+i; |
42 |
|
43 |
if( currAtom->haveOrientation()){ |
44 |
|
45 |
dAtom = new DirectionalAtom( j, myConfig); |
46 |
atomArray[j] = dAtom; |
47 |
atomArray[j]->setCoords(); |
48 |
|
49 |
ux = currAtom->getOrntX(); |
50 |
uy = currAtom->getOrntY(); |
51 |
uz = currAtom->getOrntZ(); |
52 |
|
53 |
uSqr = (ux * ux) + (uy * uy) + (uz * uz); |
54 |
|
55 |
u = sqrt( uSqr ); |
56 |
ux = ux / u; |
57 |
uy = uy / u; |
58 |
uz = uz / u; |
59 |
|
60 |
dAtom->setSUx( ux ); |
61 |
dAtom->setSUy( uy ); |
62 |
dAtom->setSUz( uz ); |
63 |
|
64 |
dAtom->setA( A ); |
65 |
|
66 |
dAtom->setJx( 0.0 ); |
67 |
dAtom->setJy( 0.0 ); |
68 |
dAtom->setJz( 0.0 ); |
69 |
|
70 |
} |
71 |
else{ |
72 |
atomArray[j] = new GeneralAtom( j, myConfig); |
73 |
atomArray[j]->setCoords(); |
74 |
} |
75 |
|
76 |
atomArray[j]->setType( currAtom->getType() ); |
77 |
|
78 |
for(k=0; k<3; k++) r[k] = myCoords[(i*3)+k]; |
79 |
|
80 |
rotMe( r, A ); |
81 |
|
82 |
for(k=0; k<3; k++) r[k] += pos[k]; |
83 |
|
84 |
atomArray[j]->setPos( r ); |
85 |
|
86 |
atomArray[j]->setVel( vel );; |
87 |
} |
88 |
} |
89 |
|
90 |
void MoLocator::calcRefCoords( void ){ |
91 |
|
92 |
int i,j,k; |
93 |
AtomStamp* currAtom; |
94 |
double centerX, centerY, centerZ; |
95 |
double smallX, smallY, smallZ; |
96 |
double bigX, bigY, bigZ; |
97 |
double dx, dy, dz; |
98 |
double dsqr; |
99 |
|
100 |
|
101 |
centerX = 0.0; |
102 |
centerY = 0.0; |
103 |
centerZ = 0.0; |
104 |
|
105 |
for(i=0; i<nAtoms; i++){ |
106 |
|
107 |
currAtom = myStamp->getAtom(i); |
108 |
if( !currAtom->havePosition() ){ |
109 |
sprintf( painCave.errMsg, |
110 |
"MoLocator error.\n" |
111 |
" Component %s, atom %s does not have a position specified.\n" |
112 |
" This means MoLocator cannot initalize it's position.\n", |
113 |
myStamp->getID(), |
114 |
currAtom->getType() ); |
115 |
painCave.isFatal = 1; |
116 |
simError(); |
117 |
} |
118 |
|
119 |
|
120 |
centerX += currAtom->getPosX(); |
121 |
centerY += currAtom->getPosY(); |
122 |
centerZ += currAtom->getPosZ(); |
123 |
} |
124 |
|
125 |
centerX /= nAtoms; |
126 |
centerY /= nAtoms; |
127 |
centerZ /= nAtoms; |
128 |
|
129 |
myCoords = new double[nAtoms*3]; |
130 |
|
131 |
j = 0; |
132 |
for(i=0; i<nAtoms; i++){ |
133 |
|
134 |
currAtom = myStamp->getAtom(i); |
135 |
j = i*3; |
136 |
|
137 |
myCoords[j] = currAtom->getPosX() - centerX; |
138 |
myCoords[j+1] = currAtom->getPosY() - centerY; |
139 |
myCoords[j+2] = currAtom->getPosZ() - centerZ; |
140 |
} |
141 |
|
142 |
smallX = myCoords[0]; |
143 |
smallY = myCoords[1]; |
144 |
smallZ = myCoords[2]; |
145 |
|
146 |
bigX = myCoords[0]; |
147 |
bigY = myCoords[1]; |
148 |
bigZ = myCoords[2]; |
149 |
|
150 |
j=0; |
151 |
for(i=1; i<nAtoms; i++){ |
152 |
j= i*3; |
153 |
|
154 |
if( myCoords[j] < smallX ) smallX = myCoords[j]; |
155 |
if( myCoords[j+1] < smallY ) smallY = myCoords[j+1]; |
156 |
if( myCoords[j+2] < smallZ ) smallZ = myCoords[j+2]; |
157 |
|
158 |
if( myCoords[j] > bigX ) bigX = myCoords[j]; |
159 |
if( myCoords[j+1] > bigY ) bigY = myCoords[j+1]; |
160 |
if( myCoords[j+2] > bigZ ) bigZ = myCoords[j+2]; |
161 |
} |
162 |
|
163 |
|
164 |
dx = bigX - smallX; |
165 |
dy = bigY - smallY; |
166 |
dz = bigZ - smallZ; |
167 |
|
168 |
dsqr = (dx * dx) + (dy * dy) + (dz * dz); |
169 |
maxLength = sqrt( dsqr ); |
170 |
} |
171 |
|
172 |
void MoLocator::rotMe( double r[3], double A[3][3] ){ |
173 |
|
174 |
double rt[3]; |
175 |
int i,j; |
176 |
|
177 |
for(i=0; i<3; i++) rt[i] = r[i]; |
178 |
|
179 |
for(i=0; i<3; i++){ |
180 |
r[i] = 0.0; |
181 |
for(j=0; j<3; j++){ |
182 |
r[i] += A[i][j] * rt[j]; |
183 |
} |
184 |
} |
185 |
} |
186 |
|
187 |
void getRandomRot( double rot[3][3] ){ |
188 |
|
189 |
double theta, phi, psi; |
190 |
double cosTheta; |
191 |
|
192 |
// select random phi, psi, and cosTheta |
193 |
|
194 |
phi = 2.0 * M_PI * drand48(); |
195 |
psi = 2.0 * M_PI * drand48(); |
196 |
cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 |
197 |
|
198 |
theta = acos( cosTheta ); |
199 |
|
200 |
getEulerRot( theta, phi, psi, rot ); |
201 |
} |
202 |
|
203 |
|
204 |
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ){ |
205 |
|
206 |
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
207 |
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
208 |
rot[0][2] = sin(theta) * sin(psi); |
209 |
|
210 |
rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
211 |
rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
212 |
rot[1][2] = sin(theta) * cos(psi); |
213 |
|
214 |
rot[2][0] = sin(phi) * sin(theta); |
215 |
rot[2][1] = -cos(phi) * sin(theta); |
216 |
rot[2][2] = cos(theta); |
217 |
} |
218 |
|
219 |
|
220 |
void getUnitRot( double u[3], double rot[3][3] ){ |
221 |
|
222 |
double theta, phi, psi; |
223 |
|
224 |
theta = acos(u[2]); |
225 |
phi = atan(u[1] / u[0]); |
226 |
psi = 0.0; |
227 |
|
228 |
getEulerRot( theta, phi, psi, rot ); |
229 |
} |
230 |
|
231 |
|