1 |
chuckv |
678 |
#include <iostream> |
2 |
|
|
|
3 |
|
|
#include <cstdlib> |
4 |
|
|
#include <cmath> |
5 |
|
|
|
6 |
|
|
#include "simError.h" |
7 |
|
|
|
8 |
|
|
#include "MoLocator.hpp" |
9 |
|
|
|
10 |
|
|
|
11 |
|
|
MoLocator::MoLocator( MoleculeStamp* theStamp ){ |
12 |
|
|
|
13 |
|
|
myStamp = theStamp; |
14 |
|
|
nAtoms = myStamp->getNAtoms(); |
15 |
|
|
|
16 |
|
|
myCoords = NULL; |
17 |
|
|
|
18 |
|
|
calcRefCoords(); |
19 |
|
|
} |
20 |
|
|
|
21 |
|
|
MoLocator::~MoLocator(){ |
22 |
|
|
|
23 |
|
|
if( myCoords != NULL ) delete[] myCoords; |
24 |
|
|
} |
25 |
|
|
|
26 |
|
|
void MoLocator::placeMol( double pos[3], double A[3][3], Atom** atomArray, |
27 |
chuckv |
700 |
int atomIndex, SimState* myConfig ){ |
28 |
chuckv |
678 |
|
29 |
|
|
int i,j,k; |
30 |
gezelter |
1099 |
double r[3], ji[3]; |
31 |
gezelter |
986 |
double phi, theta, psi; |
32 |
|
|
double sux, suy, suz; |
33 |
|
|
double Axx, Axy, Axz, Ayx, Ayy, Ayz, Azx, Azy, Azz; |
34 |
chuckv |
678 |
double ux, uy, uz, u, uSqr; |
35 |
|
|
|
36 |
|
|
AtomStamp* currAtom; |
37 |
|
|
DirectionalAtom* dAtom; |
38 |
chuckv |
700 |
double vel[3]; |
39 |
|
|
for(i=0;i<3;i++)vel[i]=0.0; |
40 |
chuckv |
678 |
|
41 |
|
|
for(i=0; i<nAtoms; i++){ |
42 |
|
|
|
43 |
|
|
currAtom = myStamp->getAtom( i ); |
44 |
|
|
j = atomIndex+i; |
45 |
|
|
|
46 |
|
|
if( currAtom->haveOrientation()){ |
47 |
|
|
|
48 |
|
|
dAtom = new DirectionalAtom( j, myConfig); |
49 |
|
|
atomArray[j] = dAtom; |
50 |
chuckv |
700 |
atomArray[j]->setCoords(); |
51 |
gezelter |
986 |
|
52 |
|
|
// Directional Atoms have standard unit vectors which are oriented |
53 |
gezelter |
1099 |
// in space using the three Euler angles. |
54 |
gezelter |
986 |
|
55 |
|
|
phi = currAtom->getEulerPhi() * M_PI / 180.0; |
56 |
|
|
theta = currAtom->getEulerTheta() * M_PI / 180.0; |
57 |
|
|
psi = currAtom->getEulerPsi()* M_PI / 180.0; |
58 |
gezelter |
1099 |
|
59 |
|
|
dAtom->setUnitFrameFromEuler(phi, theta, psi); |
60 |
chuckv |
678 |
dAtom->setA( A ); |
61 |
gezelter |
1099 |
|
62 |
|
|
ji[0] = 0.0; |
63 |
|
|
ji[1] = 0.0; |
64 |
|
|
ji[2] = 0.0; |
65 |
|
|
dAtom->setJ( ji ); |
66 |
chuckv |
678 |
|
67 |
|
|
} |
68 |
|
|
else{ |
69 |
gezelter |
1099 |
atomArray[j] = new Atom( j, myConfig); |
70 |
chuckv |
700 |
atomArray[j]->setCoords(); |
71 |
chuckv |
678 |
} |
72 |
|
|
|
73 |
|
|
atomArray[j]->setType( currAtom->getType() ); |
74 |
|
|
|
75 |
|
|
for(k=0; k<3; k++) r[k] = myCoords[(i*3)+k]; |
76 |
|
|
|
77 |
|
|
rotMe( r, A ); |
78 |
|
|
|
79 |
|
|
for(k=0; k<3; k++) r[k] += pos[k]; |
80 |
|
|
|
81 |
chuckv |
700 |
atomArray[j]->setPos( r ); |
82 |
|
|
|
83 |
|
|
atomArray[j]->setVel( vel );; |
84 |
chuckv |
678 |
} |
85 |
|
|
} |
86 |
|
|
|
87 |
|
|
void MoLocator::calcRefCoords( void ){ |
88 |
|
|
|
89 |
|
|
int i,j,k; |
90 |
|
|
AtomStamp* currAtom; |
91 |
|
|
double centerX, centerY, centerZ; |
92 |
|
|
double smallX, smallY, smallZ; |
93 |
|
|
double bigX, bigY, bigZ; |
94 |
|
|
double dx, dy, dz; |
95 |
|
|
double dsqr; |
96 |
|
|
|
97 |
|
|
|
98 |
|
|
centerX = 0.0; |
99 |
|
|
centerY = 0.0; |
100 |
|
|
centerZ = 0.0; |
101 |
|
|
|
102 |
|
|
for(i=0; i<nAtoms; i++){ |
103 |
|
|
|
104 |
|
|
currAtom = myStamp->getAtom(i); |
105 |
|
|
if( !currAtom->havePosition() ){ |
106 |
|
|
sprintf( painCave.errMsg, |
107 |
|
|
"MoLocator error.\n" |
108 |
|
|
" Component %s, atom %s does not have a position specified.\n" |
109 |
|
|
" This means MoLocator cannot initalize it's position.\n", |
110 |
|
|
myStamp->getID(), |
111 |
|
|
currAtom->getType() ); |
112 |
|
|
painCave.isFatal = 1; |
113 |
|
|
simError(); |
114 |
|
|
} |
115 |
|
|
|
116 |
|
|
|
117 |
|
|
centerX += currAtom->getPosX(); |
118 |
|
|
centerY += currAtom->getPosY(); |
119 |
|
|
centerZ += currAtom->getPosZ(); |
120 |
|
|
} |
121 |
|
|
|
122 |
|
|
centerX /= nAtoms; |
123 |
|
|
centerY /= nAtoms; |
124 |
|
|
centerZ /= nAtoms; |
125 |
|
|
|
126 |
|
|
myCoords = new double[nAtoms*3]; |
127 |
|
|
|
128 |
|
|
j = 0; |
129 |
|
|
for(i=0; i<nAtoms; i++){ |
130 |
|
|
|
131 |
|
|
currAtom = myStamp->getAtom(i); |
132 |
|
|
j = i*3; |
133 |
|
|
|
134 |
|
|
myCoords[j] = currAtom->getPosX() - centerX; |
135 |
|
|
myCoords[j+1] = currAtom->getPosY() - centerY; |
136 |
|
|
myCoords[j+2] = currAtom->getPosZ() - centerZ; |
137 |
|
|
} |
138 |
|
|
|
139 |
|
|
smallX = myCoords[0]; |
140 |
|
|
smallY = myCoords[1]; |
141 |
|
|
smallZ = myCoords[2]; |
142 |
|
|
|
143 |
|
|
bigX = myCoords[0]; |
144 |
|
|
bigY = myCoords[1]; |
145 |
|
|
bigZ = myCoords[2]; |
146 |
|
|
|
147 |
|
|
j=0; |
148 |
|
|
for(i=1; i<nAtoms; i++){ |
149 |
|
|
j= i*3; |
150 |
|
|
|
151 |
|
|
if( myCoords[j] < smallX ) smallX = myCoords[j]; |
152 |
|
|
if( myCoords[j+1] < smallY ) smallY = myCoords[j+1]; |
153 |
|
|
if( myCoords[j+2] < smallZ ) smallZ = myCoords[j+2]; |
154 |
|
|
|
155 |
|
|
if( myCoords[j] > bigX ) bigX = myCoords[j]; |
156 |
|
|
if( myCoords[j+1] > bigY ) bigY = myCoords[j+1]; |
157 |
|
|
if( myCoords[j+2] > bigZ ) bigZ = myCoords[j+2]; |
158 |
|
|
} |
159 |
|
|
|
160 |
|
|
|
161 |
|
|
dx = bigX - smallX; |
162 |
|
|
dy = bigY - smallY; |
163 |
|
|
dz = bigZ - smallZ; |
164 |
|
|
|
165 |
|
|
dsqr = (dx * dx) + (dy * dy) + (dz * dz); |
166 |
|
|
maxLength = sqrt( dsqr ); |
167 |
|
|
} |
168 |
|
|
|
169 |
|
|
void MoLocator::rotMe( double r[3], double A[3][3] ){ |
170 |
|
|
|
171 |
|
|
double rt[3]; |
172 |
|
|
int i,j; |
173 |
|
|
|
174 |
|
|
for(i=0; i<3; i++) rt[i] = r[i]; |
175 |
|
|
|
176 |
|
|
for(i=0; i<3; i++){ |
177 |
|
|
r[i] = 0.0; |
178 |
|
|
for(j=0; j<3; j++){ |
179 |
|
|
r[i] += A[i][j] * rt[j]; |
180 |
|
|
} |
181 |
|
|
} |
182 |
|
|
} |
183 |
mmeineke |
821 |
|
184 |
|
|
void getRandomRot( double rot[3][3] ){ |
185 |
|
|
|
186 |
|
|
double theta, phi, psi; |
187 |
|
|
double cosTheta; |
188 |
|
|
|
189 |
|
|
// select random phi, psi, and cosTheta |
190 |
|
|
|
191 |
|
|
phi = 2.0 * M_PI * drand48(); |
192 |
|
|
psi = 2.0 * M_PI * drand48(); |
193 |
|
|
cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 |
194 |
|
|
|
195 |
|
|
theta = acos( cosTheta ); |
196 |
|
|
|
197 |
|
|
getEulerRot( theta, phi, psi, rot ); |
198 |
|
|
} |
199 |
|
|
|
200 |
|
|
|
201 |
|
|
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ){ |
202 |
|
|
|
203 |
|
|
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
204 |
|
|
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
205 |
|
|
rot[0][2] = sin(theta) * sin(psi); |
206 |
|
|
|
207 |
|
|
rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
208 |
|
|
rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
209 |
|
|
rot[1][2] = sin(theta) * cos(psi); |
210 |
|
|
|
211 |
|
|
rot[2][0] = sin(phi) * sin(theta); |
212 |
|
|
rot[2][1] = -cos(phi) * sin(theta); |
213 |
|
|
rot[2][2] = cos(theta); |
214 |
|
|
} |
215 |
|
|
|