1 |
#include <iostream> |
2 |
|
3 |
#include <cstdlib> |
4 |
#include <cstring> |
5 |
#include <cmath> |
6 |
|
7 |
#include "simError.h" |
8 |
#include "SimInfo.hpp" |
9 |
#include "ReadWrite.hpp" |
10 |
|
11 |
#include "MoLocator.hpp" |
12 |
#include "sysBuild.hpp" |
13 |
#include "bilayerSys.hpp" |
14 |
|
15 |
|
16 |
|
17 |
void map( double &x, double &y, double &z, |
18 |
double boxX, double boxY, double boxZ ); |
19 |
|
20 |
int buildRandomBilayer( void ); |
21 |
|
22 |
void getRandomRot( double rot[3][3] ); |
23 |
|
24 |
int buildBilayer( int isRandom ){ |
25 |
|
26 |
if( isRandom ){ |
27 |
return buildRandomBilayer(); |
28 |
} |
29 |
else{ |
30 |
sprintf( painCave.errMsg, |
31 |
"Cannot currently create a non-random bilayer.\n" ); |
32 |
painCave.isFatal = 1; |
33 |
simError(); |
34 |
return 0; |
35 |
} |
36 |
} |
37 |
|
38 |
|
39 |
int buildRandomBilayer( void ){ |
40 |
|
41 |
typedef struct{ |
42 |
double rot[3][3]; |
43 |
double pos[3]; |
44 |
} coord; |
45 |
|
46 |
|
47 |
const double waterRho = 0.0334; // number density per cubic angstrom |
48 |
const double waterVol = 4.0 / waterRho; // volume occupied by 4 waters |
49 |
const double waterCell = 4.929; // fcc unit cell length |
50 |
|
51 |
const double water_padding = 2.5; |
52 |
const double lipid_spaceing = 5.0; |
53 |
|
54 |
|
55 |
int i,j,k, l; |
56 |
int nAtoms, atomIndex, molIndex, molID; |
57 |
int* molSeq; |
58 |
int* molMap; |
59 |
int* molStart; |
60 |
int* cardDeck; |
61 |
int deckSize; |
62 |
int rSite, rCard; |
63 |
double cell; |
64 |
int nCells, nSites, siteIndex; |
65 |
|
66 |
coord testSite; |
67 |
|
68 |
Atom** atoms; |
69 |
SimInfo* simnfo; |
70 |
DumpWriter* writer; |
71 |
|
72 |
MoleculeStamp* lipidStamp; |
73 |
MoleculeStamp* waterStamp; |
74 |
MoLocator *lipidLocate; |
75 |
MoLocator *waterLocate; |
76 |
int foundLipid, foundWater; |
77 |
int nLipids, lipidNatoms, nWaters, waterNatoms; |
78 |
double testBox, maxLength; |
79 |
|
80 |
srand48( RAND_SEED ); |
81 |
|
82 |
|
83 |
// set the the lipidStamp |
84 |
|
85 |
foundLipid = 0; |
86 |
foundWater = 0; |
87 |
for(i=0; i<bsInfo.nComponents; i++){ |
88 |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ |
89 |
|
90 |
foundLipid = 1; |
91 |
lipidStamp = bsInfo.compStamps[i]; |
92 |
nLipids = bsInfo.componentsNmol[i]; |
93 |
} |
94 |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ |
95 |
|
96 |
foundWater = 1; |
97 |
|
98 |
waterStamp = bsInfo.compStamps[i]; |
99 |
nWaters = bsInfo.componentsNmol[i]; |
100 |
} |
101 |
} |
102 |
if( !foundLipid ){ |
103 |
sprintf(painCave.errMsg, |
104 |
"Could not find lipid \"%s\" in the bass file.\n", |
105 |
bsInfo.lipidName ); |
106 |
painCave.isFatal = 1; |
107 |
simError(); |
108 |
} |
109 |
if( !foundWater ){ |
110 |
sprintf(painCave.errMsg, |
111 |
"Could not find solvent \"%s\" in the bass file.\n", |
112 |
bsInfo.waterName ); |
113 |
painCave.isFatal = 1; |
114 |
simError(); |
115 |
} |
116 |
|
117 |
//create the temp Molocator and atom Arrays |
118 |
|
119 |
lipidLocate = new MoLocator( lipidStamp ); |
120 |
lipidNatoms = lipidStamp->getNAtoms(); |
121 |
maxLength = lipidLocate->getMaxLength(); |
122 |
|
123 |
waterLocate = new MoLocator( waterStamp ); |
124 |
waterNatoms = waterStamp->getNAtoms(); |
125 |
|
126 |
nAtoms = nLipids * lipidNatoms; |
127 |
|
128 |
Atom::createArrays( nAtoms ); |
129 |
atoms = new Atom*[nAtoms]; |
130 |
|
131 |
// create the test box for initial water displacement |
132 |
|
133 |
testBox = maxLength + waterCell * 4.0; // pad with 4 cells |
134 |
nCells = (int)( testBox / waterCell + 1.0 ); |
135 |
int testWaters = 4 * nCells * nCells * nCells; |
136 |
|
137 |
double* waterX = new double[testWaters]; |
138 |
double* waterY = new double[testWaters]; |
139 |
double* waterZ = new double[testWaters]; |
140 |
|
141 |
double x0 = 0.0 - ( testBox * 0.5 ); |
142 |
double y0 = 0.0 - ( testBox * 0.5 ); |
143 |
double z0 = 0.0 - ( testBox * 0.5 ); |
144 |
|
145 |
|
146 |
// create an fcc lattice in the water box. |
147 |
|
148 |
int ndx = 0; |
149 |
for( i=0; i < nCells; i++ ){ |
150 |
for( j=0; j < nCells; j++ ){ |
151 |
for( k=0; k < nCells; k++ ){ |
152 |
|
153 |
waterX[ndx] = i * waterCell + x0; |
154 |
waterY[ndx] = j * waterCell + y0; |
155 |
waterZ[ndx] = k * waterCell + z0; |
156 |
ndx++; |
157 |
|
158 |
waterX[ndx] = i * waterCell + 0.5 * waterCell + x0; |
159 |
waterY[ndx] = j * waterCell + 0.5 * waterCell + y0; |
160 |
waterZ[ndx] = k * waterCell + z0; |
161 |
ndx++; |
162 |
|
163 |
waterX[ndx] = i * waterCell + x0; |
164 |
waterY[ndx] = j * waterCell + 0.5 * waterCell + y0; |
165 |
waterZ[ndx] = k * waterCell + 0.5 * waterCell + z0; |
166 |
ndx++; |
167 |
|
168 |
waterX[ndx] = i * waterCell + 0.5 * waterCell + x0; |
169 |
waterY[ndx] = j * waterCell + y0; |
170 |
waterZ[ndx] = k * waterCell + 0.5 * waterCell + z0; |
171 |
ndx++; |
172 |
} |
173 |
} |
174 |
} |
175 |
|
176 |
// calculate the number of water's displaced by our lipid. |
177 |
|
178 |
testSite.rot[0][0] = 1.0; |
179 |
testSite.rot[0][1] = 0.0; |
180 |
testSite.rot[0][2] = 0.0; |
181 |
|
182 |
testSite.rot[1][0] = 0.0; |
183 |
testSite.rot[1][1] = 1.0; |
184 |
testSite.rot[1][2] = 0.0; |
185 |
|
186 |
testSite.rot[2][0] = 0.0; |
187 |
testSite.rot[2][1] = 0.0; |
188 |
testSite.rot[2][2] = 1.0; |
189 |
|
190 |
testSite.pos[0] = 0.0; |
191 |
testSite.pos[1] = 0.0; |
192 |
testSite.pos[2] = 0.0; |
193 |
|
194 |
lipidLocate->placeMol( testSite.pos, testSite.rot, atoms, 0 ); |
195 |
|
196 |
int *isActive = new int[testWaters]; |
197 |
for(i=0; i<testWaters; i++) isActive[i] = 1; |
198 |
|
199 |
int n_deleted = 0; |
200 |
double dx, dy, dz; |
201 |
double dx2, dy2, dz2, dSqr; |
202 |
double rCutSqr = water_padding * water_padding; |
203 |
|
204 |
for(i=0; ( (i<testWaters) && isActive[i] ); i++){ |
205 |
for(j=0; ( (j<lipidNatoms) && isActive[i] ); j++){ |
206 |
|
207 |
dx = waterX[i] - atoms[j]->getX(); |
208 |
dy = waterY[i] - atoms[j]->getY(); |
209 |
dz = waterZ[i] - atoms[j]->getZ(); |
210 |
|
211 |
map( dx, dy, dz, testBox, testBox, testBox ); |
212 |
|
213 |
dx2 = dx * dx; |
214 |
dy2 = dy * dy; |
215 |
dz2 = dz * dz; |
216 |
|
217 |
dSqr = dx2 + dy2 + dz2; |
218 |
if( dSqr < rCutSqr ){ |
219 |
isActive[i] = 0; |
220 |
n_deleted++; |
221 |
} |
222 |
} |
223 |
} |
224 |
|
225 |
int targetWaters = nWaters + n_deleted * nLipids; |
226 |
|
227 |
// find the best box size for the sim |
228 |
|
229 |
int testTot; |
230 |
int done = 0; |
231 |
ndx = 0; |
232 |
while( !done ){ |
233 |
|
234 |
ndx++; |
235 |
testTot = 4 * ndx * ndx * ndx; |
236 |
|
237 |
if( testTot >= targetWaters ) done = 1; |
238 |
} |
239 |
|
240 |
nCells = ndx; |
241 |
|
242 |
|
243 |
// create the new water box to the new specifications |
244 |
|
245 |
int newWaters = nCells * nCells * nCells * 4; |
246 |
|
247 |
delete[] waterX; |
248 |
delete[] waterY; |
249 |
delete[] waterZ; |
250 |
|
251 |
coord* waterSites = new coord[newWaters]; |
252 |
|
253 |
double box_x = waterCell * nCells; |
254 |
double box_y = waterCell * nCells; |
255 |
double box_z = waterCell * nCells; |
256 |
|
257 |
// create an fcc lattice in the water box. |
258 |
|
259 |
ndx = 0; |
260 |
for( i=0; i < nCells; i++ ){ |
261 |
for( j=0; j < nCells; j++ ){ |
262 |
for( k=0; k < nCells; k++ ){ |
263 |
|
264 |
waterSites[ndx].pos[0] = i * waterCell; |
265 |
waterSites[ndx].pos[1] = j * waterCell; |
266 |
waterSites[ndx].pos[2] = k * waterCell; |
267 |
ndx++; |
268 |
|
269 |
waterSites[ndx].pos[0] = i * waterCell + 0.5 * waterCell; |
270 |
waterSites[ndx].pos[1] = j * waterCell + 0.5 * waterCell; |
271 |
waterSites[ndx].pos[2] = k * waterCell; |
272 |
ndx++; |
273 |
|
274 |
waterSites[ndx].pos[0] = i * waterCell; |
275 |
waterSites[ndx].pos[1] = j * waterCell + 0.5 * waterCell; |
276 |
waterSites[ndx].pos[2] = k * waterCell + 0.5 * waterCell; |
277 |
ndx++; |
278 |
|
279 |
waterSites[ndx].pos[0] = i * waterCell + 0.5 * waterCell; |
280 |
waterSites[ndx].pos[1] = j * waterCell; |
281 |
waterSites[ndx].pos[2] = k * waterCell + 0.5 * waterCell; |
282 |
ndx++; |
283 |
} |
284 |
} |
285 |
} |
286 |
|
287 |
|
288 |
// clear up memory from the test box |
289 |
|
290 |
for(i=0; i<lipidNatoms; i++ ) delete atoms[i]; |
291 |
|
292 |
coord* lipidSites = new coord[nLipids]; |
293 |
|
294 |
// start a 3D RSA for the for the lipid placements |
295 |
|
296 |
|
297 |
int reject; |
298 |
int testDX, acceptedDX; |
299 |
|
300 |
rCutSqr = lipid_spaceing * lipid_spaceing; |
301 |
|
302 |
for(i=0; i<nLipids; i++ ){ |
303 |
done = 0; |
304 |
while( !done ){ |
305 |
|
306 |
lipidSites[i].pos[0] = drand48() * box_x; |
307 |
lipidSites[i].pos[1] = drand48() * box_y; |
308 |
lipidSites[i].pos[2] = drand48() * box_z; |
309 |
|
310 |
getRandomRot( lipidSites[i].rot ); |
311 |
|
312 |
ndx = i * lipidNatoms; |
313 |
|
314 |
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
315 |
ndx ); |
316 |
|
317 |
reject = 0; |
318 |
for( j=0; !reject && j<i; j++){ |
319 |
for(k=0; !reject && k<lipidNatoms; k++){ |
320 |
|
321 |
acceptedDX = j*lipidNatoms + k; |
322 |
for(l=0; !reject && l<lipidNatoms; l++){ |
323 |
|
324 |
testDX = ndx + l; |
325 |
|
326 |
dx = atoms[testDX]->getX() - atoms[acceptedDX]->getX(); |
327 |
dy = atoms[testDX]->getY() - atoms[acceptedDX]->getY(); |
328 |
dz = atoms[testDX]->getZ() - atoms[acceptedDX]->getZ(); |
329 |
|
330 |
map( dx, dy, dz, box_x, box_y, box_z ); |
331 |
|
332 |
dx2 = dx * dx; |
333 |
dy2 = dy * dy; |
334 |
dz2 = dz * dz; |
335 |
|
336 |
dSqr = dx2 + dy2 + dz2; |
337 |
if( dSqr < rCutSqr ) reject = 1; |
338 |
} |
339 |
} |
340 |
} |
341 |
|
342 |
if( reject ){ |
343 |
|
344 |
for(j=0; j< lipidNatoms; j++) delete atoms[ndx+j]; |
345 |
} |
346 |
else{ |
347 |
done = 1; |
348 |
std::cout << i << " has been accepted\n"; |
349 |
} |
350 |
} |
351 |
} |
352 |
|
353 |
// cut out the waters that overlap with the lipids. |
354 |
|
355 |
delete[] isActive; |
356 |
isActive = new int[newWaters]; |
357 |
for(i=0; i<newWaters; i++) isActive[i] = 1; |
358 |
int n_active = newWaters; |
359 |
rCutSqr = water_padding * water_padding; |
360 |
|
361 |
for(i=0; ( (i<newWaters) && isActive[i] ); i++){ |
362 |
for(j=0; ( (j<nAtoms) && isActive[i] ); j++){ |
363 |
|
364 |
dx = waterSites[i].pos[0] - atoms[j]->getX(); |
365 |
dy = waterSites[i].pos[1] - atoms[j]->getY(); |
366 |
dz = waterSites[i].pos[2] - atoms[j]->getZ(); |
367 |
|
368 |
map( dx, dy, dz, box_x, box_y, box_z ); |
369 |
|
370 |
dx2 = dx * dx; |
371 |
dy2 = dy * dy; |
372 |
dz2 = dz * dz; |
373 |
|
374 |
dSqr = dx2 + dy2 + dz2; |
375 |
if( dSqr < rCutSqr ){ |
376 |
isActive[i] = 0; |
377 |
n_active--; |
378 |
} |
379 |
} |
380 |
} |
381 |
|
382 |
if( n_active < nWaters ){ |
383 |
|
384 |
sprintf( painCave.errMsg, |
385 |
"Too many waters were removed, edit code and try again.\n" ); |
386 |
|
387 |
painCave.isFatal = 1; |
388 |
simError(); |
389 |
} |
390 |
|
391 |
int quickKill; |
392 |
while( n_active > nWaters ){ |
393 |
|
394 |
quickKill = (int)(drand48()*newWaters); |
395 |
|
396 |
if( isActive[quickKill] ){ |
397 |
isActive[quickKill] = 0; |
398 |
n_active--; |
399 |
} |
400 |
} |
401 |
|
402 |
if( n_active != nWaters ){ |
403 |
|
404 |
sprintf( painCave.errMsg, |
405 |
"QuickKill didn't work right. n_active = %d, and nWaters = %d\n", |
406 |
n_active, nWaters ); |
407 |
painCave.isFatal = 1; |
408 |
simError(); |
409 |
} |
410 |
|
411 |
// clean up our messes before building the final system. |
412 |
|
413 |
for(i=0; i<nAtoms; i++){ |
414 |
|
415 |
delete atoms[i]; |
416 |
} |
417 |
Atom::destroyArrays(); |
418 |
|
419 |
|
420 |
// create the real Atom arrays |
421 |
|
422 |
nAtoms = 0; |
423 |
molIndex = 0; |
424 |
molStart = new int[nLipids + nWaters]; |
425 |
|
426 |
for(j=0; j<nLipids; j++){ |
427 |
molStart[molIndex] = nAtoms; |
428 |
molIndex++; |
429 |
nAtoms += lipidNatoms; |
430 |
} |
431 |
|
432 |
for(j=0; j<nWaters; j++){ |
433 |
molStart[molIndex] = nAtoms; |
434 |
molIndex++; |
435 |
nAtoms += waterNatoms; |
436 |
} |
437 |
|
438 |
|
439 |
Atom::createArrays( nAtoms ); |
440 |
atoms = new Atom*[nAtoms]; |
441 |
|
442 |
|
443 |
// initialize lipid positions |
444 |
|
445 |
molIndex = 0; |
446 |
for(i=0; i<nLipids; i++ ){ |
447 |
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
448 |
molStart[molIndex] ); |
449 |
molIndex++; |
450 |
} |
451 |
|
452 |
// initialize the water positions |
453 |
|
454 |
for(i=0; i<newWaters; i++){ |
455 |
|
456 |
if( isActive[i] ){ |
457 |
|
458 |
getRandomRot( waterSites[i].rot ); |
459 |
waterLocate->placeMol( waterSites[i].pos, waterSites[i].rot, atoms, |
460 |
molStart[molIndex] ); |
461 |
molIndex++; |
462 |
} |
463 |
} |
464 |
|
465 |
// set up the SimInfo object |
466 |
|
467 |
bsInfo.boxX = box_x; |
468 |
bsInfo.boxY = box_y; |
469 |
bsInfo.boxZ = box_z; |
470 |
|
471 |
simnfo = new SimInfo(); |
472 |
simnfo->n_atoms = nAtoms; |
473 |
simnfo->box_x = bsInfo.boxX; |
474 |
simnfo->box_y = bsInfo.boxY; |
475 |
simnfo->box_z = bsInfo.boxZ; |
476 |
|
477 |
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
478 |
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
479 |
|
480 |
simnfo->atoms = atoms; |
481 |
|
482 |
// set up the writer and write out |
483 |
|
484 |
writer = new DumpWriter( simnfo ); |
485 |
writer->writeFinal(); |
486 |
|
487 |
// clean up the memory |
488 |
|
489 |
// if( molMap != NULL ) delete[] molMap; |
490 |
// if( cardDeck != NULL ) delete[] cardDeck; |
491 |
// if( locate != NULL ){ |
492 |
// for(i=0; i<bsInfo.nComponents; i++){ |
493 |
// delete locate[i]; |
494 |
// } |
495 |
// delete[] locate; |
496 |
// } |
497 |
// if( atoms != NULL ){ |
498 |
// for(i=0; i<nAtoms; i++){ |
499 |
// delete atoms[i]; |
500 |
// } |
501 |
// Atom::destroyArrays(); |
502 |
// delete[] atoms; |
503 |
// } |
504 |
// if( molSeq != NULL ) delete[] molSeq; |
505 |
// if( simnfo != NULL ) delete simnfo; |
506 |
// if( writer != NULL ) delete writer; |
507 |
|
508 |
return 1; |
509 |
} |
510 |
|
511 |
|
512 |
|
513 |
int Old_buildRandomBilayer( void ){ |
514 |
|
515 |
int i,j,k; |
516 |
int nAtoms, atomIndex, molIndex, molID; |
517 |
int* molSeq; |
518 |
int* molMap; |
519 |
int* molStart; |
520 |
int* cardDeck; |
521 |
int deckSize; |
522 |
int rSite, rCard; |
523 |
double cell; |
524 |
int nCells, nSites, siteIndex; |
525 |
double rot[3][3]; |
526 |
double pos[3]; |
527 |
|
528 |
Atom** atoms; |
529 |
SimInfo* simnfo; |
530 |
DumpWriter* writer; |
531 |
MoLocator** locate; |
532 |
|
533 |
// initialize functions and variables |
534 |
|
535 |
srand48( RAND_SEED ); |
536 |
molSeq = NULL; |
537 |
molStart = NULL; |
538 |
molMap = NULL; |
539 |
cardDeck = NULL; |
540 |
atoms = NULL; |
541 |
locate = NULL; |
542 |
simnfo = NULL; |
543 |
writer = NULL; |
544 |
|
545 |
// calculate the number of cells in the fcc box |
546 |
|
547 |
nCells = 0; |
548 |
nSites = 0; |
549 |
while( nSites < bsInfo.totNmol ){ |
550 |
nCells++; |
551 |
nSites = 4.0 * pow( (double)nCells, 3.0 ); |
552 |
} |
553 |
|
554 |
|
555 |
// create the molMap and cardDeck arrays |
556 |
|
557 |
molMap = new int[nSites]; |
558 |
cardDeck = new int[nSites]; |
559 |
|
560 |
for(i=0; i<nSites; i++){ |
561 |
molMap[i] = -1; |
562 |
cardDeck[i] = i; |
563 |
} |
564 |
|
565 |
// randomly place the molecules on the sites |
566 |
|
567 |
deckSize = nSites; |
568 |
for(i=0; i<bsInfo.totNmol; i++){ |
569 |
rCard = (int)( deckSize * drand48() ); |
570 |
rSite = cardDeck[rCard]; |
571 |
molMap[rSite] = i; |
572 |
|
573 |
// book keep the card deck; |
574 |
|
575 |
deckSize--; |
576 |
cardDeck[rCard] = cardDeck[deckSize]; |
577 |
} |
578 |
|
579 |
|
580 |
// create the MoLocator and Atom arrays |
581 |
|
582 |
nAtoms = 0; |
583 |
molIndex = 0; |
584 |
locate = new MoLocator*[bsInfo.nComponents]; |
585 |
molSeq = new int[bsInfo.totNmol]; |
586 |
molStart = new int[bsInfo.totNmol]; |
587 |
for(i=0; i<bsInfo.nComponents; i++){ |
588 |
locate[i] = new MoLocator( bsInfo.compStamps[i] ); |
589 |
for(j=0; j<bsInfo.componentsNmol[i]; j++){ |
590 |
molSeq[molIndex] = i; |
591 |
molStart[molIndex] = nAtoms; |
592 |
molIndex++; |
593 |
nAtoms += bsInfo.compStamps[i]->getNAtoms(); |
594 |
} |
595 |
} |
596 |
|
597 |
Atom::createArrays( nAtoms ); |
598 |
atoms = new Atom*[nAtoms]; |
599 |
|
600 |
|
601 |
// place the molecules at each FCC site |
602 |
|
603 |
cell = 5.0; |
604 |
for(i=0; i<bsInfo.nComponents; i++){ |
605 |
if(cell < locate[i]->getMaxLength() ) cell = locate[i]->getMaxLength(); |
606 |
} |
607 |
cell *= 1.2; // add a little buffer |
608 |
|
609 |
cell *= M_SQRT2; |
610 |
|
611 |
siteIndex = 0; |
612 |
for(i=0; i<nCells; i++){ |
613 |
for(j=0; j<nCells; j++){ |
614 |
for(k=0; k<nCells; k++){ |
615 |
|
616 |
if( molMap[siteIndex] >= 0 ){ |
617 |
pos[0] = i * cell; |
618 |
pos[1] = j * cell; |
619 |
pos[2] = k * cell; |
620 |
|
621 |
getRandomRot( rot ); |
622 |
molID = molSeq[molMap[siteIndex]]; |
623 |
atomIndex = molStart[ molMap[siteIndex] ]; |
624 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
625 |
} |
626 |
siteIndex++; |
627 |
|
628 |
if( molMap[siteIndex] >= 0 ){ |
629 |
pos[0] = i * cell + (0.5 * cell); |
630 |
pos[1] = j * cell; |
631 |
pos[2] = k * cell + (0.5 * cell); |
632 |
|
633 |
getRandomRot( rot ); |
634 |
molID = molSeq[molMap[siteIndex]]; |
635 |
atomIndex = molStart[ molMap[siteIndex] ]; |
636 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
637 |
} |
638 |
siteIndex++; |
639 |
|
640 |
if( molMap[siteIndex] >= 0 ){ |
641 |
pos[0] = i * cell + (0.5 * cell); |
642 |
pos[1] = j * cell + (0.5 * cell); |
643 |
pos[2] = k * cell; |
644 |
|
645 |
getRandomRot( rot ); |
646 |
molID = molSeq[molMap[siteIndex]]; |
647 |
atomIndex = molStart[ molMap[siteIndex] ]; |
648 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
649 |
} |
650 |
siteIndex++; |
651 |
|
652 |
if( molMap[siteIndex] >= 0 ){ |
653 |
pos[0] = i * cell; |
654 |
pos[1] = j * cell + (0.5 * cell); |
655 |
pos[2] = k * cell + (0.5 * cell); |
656 |
|
657 |
getRandomRot( rot ); |
658 |
molID = molSeq[molMap[siteIndex]]; |
659 |
atomIndex = molStart[ molMap[siteIndex] ]; |
660 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
661 |
} |
662 |
siteIndex++; |
663 |
} |
664 |
} |
665 |
} |
666 |
|
667 |
// set up the SimInfo object |
668 |
|
669 |
bsInfo.boxX = nCells * cell; |
670 |
bsInfo.boxY = nCells * cell; |
671 |
bsInfo.boxZ = nCells * cell; |
672 |
|
673 |
simnfo = new SimInfo(); |
674 |
simnfo->n_atoms = nAtoms; |
675 |
simnfo->box_x = bsInfo.boxX; |
676 |
simnfo->box_y = bsInfo.boxY; |
677 |
simnfo->box_z = bsInfo.boxZ; |
678 |
|
679 |
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
680 |
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
681 |
|
682 |
simnfo->atoms = atoms; |
683 |
|
684 |
// set up the writer and write out |
685 |
|
686 |
writer = new DumpWriter( simnfo ); |
687 |
writer->writeFinal(); |
688 |
|
689 |
// clean up the memory |
690 |
|
691 |
if( molMap != NULL ) delete[] molMap; |
692 |
if( cardDeck != NULL ) delete[] cardDeck; |
693 |
if( locate != NULL ){ |
694 |
for(i=0; i<bsInfo.nComponents; i++){ |
695 |
delete locate[i]; |
696 |
} |
697 |
delete[] locate; |
698 |
} |
699 |
if( atoms != NULL ){ |
700 |
for(i=0; i<nAtoms; i++){ |
701 |
delete atoms[i]; |
702 |
} |
703 |
Atom::destroyArrays(); |
704 |
delete[] atoms; |
705 |
} |
706 |
if( molSeq != NULL ) delete[] molSeq; |
707 |
if( simnfo != NULL ) delete simnfo; |
708 |
if( writer != NULL ) delete writer; |
709 |
|
710 |
return 1; |
711 |
} |
712 |
|
713 |
|
714 |
void getRandomRot( double rot[3][3] ){ |
715 |
|
716 |
double theta, phi, psi; |
717 |
double cosTheta; |
718 |
|
719 |
// select random phi, psi, and cosTheta |
720 |
|
721 |
phi = 2.0 * M_PI * drand48(); |
722 |
psi = 2.0 * M_PI * drand48(); |
723 |
cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 |
724 |
|
725 |
theta = acos( cosTheta ); |
726 |
|
727 |
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
728 |
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
729 |
rot[0][2] = sin(theta) * sin(psi); |
730 |
|
731 |
rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
732 |
rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
733 |
rot[1][2] = sin(theta) * cos(psi); |
734 |
|
735 |
rot[2][0] = sin(phi) * sin(theta); |
736 |
rot[2][1] = -cos(phi) * sin(theta); |
737 |
rot[2][2] = cos(theta); |
738 |
} |
739 |
|
740 |
|
741 |
|
742 |
void map( double &x, double &y, double &z, |
743 |
double boxX, double boxY, double boxZ ){ |
744 |
|
745 |
if(x < 0) x -= boxX * (double)( (int)( (x / boxX) - 0.5 ) ); |
746 |
else x -= boxX * (double)( (int)( (x / boxX ) + 0.5)); |
747 |
|
748 |
if(y < 0) y -= boxY * (double)( (int)( (y / boxY) - 0.5 ) ); |
749 |
else y -= boxY * (double)( (int)( (y / boxY ) + 0.5)); |
750 |
|
751 |
if(z < 0) z -= boxZ * (double)( (int)( (z / boxZ) - 0.5 ) ); |
752 |
else z -= boxZ * (double)( (int)( (z / boxZ ) + 0.5)); |
753 |
} |