1 |
#include <iostream> |
2 |
|
3 |
#include <cstdlib> |
4 |
#include <cstring> |
5 |
#include <cmath> |
6 |
|
7 |
#include "simError.h" |
8 |
#include "SimInfo.hpp" |
9 |
#include "ReadWrite.hpp" |
10 |
|
11 |
#include "MoLocator.hpp" |
12 |
#include "sysBuild.hpp" |
13 |
#include "bilayerSys.hpp" |
14 |
|
15 |
|
16 |
|
17 |
void map( double &x, double &y, double &z, |
18 |
double boxX, double boxY, double boxZ ); |
19 |
|
20 |
int buildRandomBilayer( void ); |
21 |
|
22 |
void getRandomRot( double rot[3][3] ); |
23 |
|
24 |
int buildBilayer( int isRandom ){ |
25 |
|
26 |
if( isRandom ){ |
27 |
return buildRandomBilayer(); |
28 |
} |
29 |
else{ |
30 |
sprintf( painCave.errMsg, |
31 |
"Cannot currently create a non-random bilayer.\n" ); |
32 |
painCave.isFatal = 1; |
33 |
simError(); |
34 |
return 0; |
35 |
} |
36 |
} |
37 |
|
38 |
|
39 |
int buildRandomBilayer( void ){ |
40 |
|
41 |
typedef struct{ |
42 |
double rot[3][3]; |
43 |
double pos[3]; |
44 |
} coord; |
45 |
|
46 |
|
47 |
const double waterRho = 0.0334; // number density per cubic angstrom |
48 |
const double waterVol = 4.0 / water_rho; // volume occupied by 4 waters |
49 |
const double waterCell = 4.929; // fcc unit cell length |
50 |
|
51 |
const double water_padding = 2.5; |
52 |
const double lipid_spaceing = 2.5; |
53 |
|
54 |
|
55 |
int i,j,k; |
56 |
int nAtoms, atomIndex, molIndex, molID; |
57 |
int* molSeq; |
58 |
int* molMap; |
59 |
int* molStart; |
60 |
int* cardDeck; |
61 |
int deckSize; |
62 |
int rSite, rCard; |
63 |
double cell; |
64 |
int nCells, nSites, siteIndex; |
65 |
|
66 |
coord *siteArray; |
67 |
coord testSite; |
68 |
|
69 |
MoleculeStamp* lipidStamp; |
70 |
MoleculeStamp* waterStamp; |
71 |
MoLocator *lipidLocate; |
72 |
MoLocator *waterLocate |
73 |
int foundLipid, foundWater; |
74 |
int nLipids, lipiNatoms, nWaters; |
75 |
double testBox, maxLength; |
76 |
|
77 |
srand48( RAND_SEED ); |
78 |
|
79 |
|
80 |
// set the the lipidStamp |
81 |
|
82 |
foundLipid = 0; |
83 |
for(i=0; i<bsInfo.nComponents; i++){ |
84 |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ |
85 |
|
86 |
foundlipid = 1; |
87 |
lipidStamp = bsInfo.compStamps[i]; |
88 |
nLipids = bsInfo.componentsNmol[i]; |
89 |
} |
90 |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ |
91 |
|
92 |
foundWater = 1; |
93 |
waterStamp = bsInfo.compStamps[i]; |
94 |
nWaters = bsInfo.componentsNmol[i]; |
95 |
} |
96 |
} |
97 |
if( !foundLipid ){ |
98 |
sprintf(painCave.errMsg, |
99 |
"Could not find lipid \"%s\" in the bass file.\n", |
100 |
bsInfo.lipidName ); |
101 |
painCave.isFatal = 1; |
102 |
simError(); |
103 |
} |
104 |
if( !foundWater ){ |
105 |
sprintf(painCave.errMsg, |
106 |
"Could not find water \"%s\" in the bass file.\n", |
107 |
bsInfo.waterName ); |
108 |
painCave.isFatal = 1; |
109 |
simError(); |
110 |
} |
111 |
|
112 |
//create the temp Molocator and atom Arrays |
113 |
|
114 |
lipidLocate = new MoLocator( lipidStamp ); |
115 |
lipidNatoms = lipidStamp->getNAtoms(); |
116 |
maxLength = lipidLocate->getMaxLength(); |
117 |
|
118 |
waterLocate = new MoLocator( waterStamp ); |
119 |
|
120 |
nAtoms = nLipids * lipidNatoms; |
121 |
|
122 |
Atom::createArrays( nAtoms ); |
123 |
atoms = new Atom*[nAtoms]; |
124 |
|
125 |
// create the test box for initial water displacement |
126 |
|
127 |
testBox = maxLength + waterCell * 4.0; // pad with 4 cells |
128 |
int nCells = (int)( testBox / waterCell + 1.0 ); |
129 |
int testWaters = 4 * nCells * nCells * nCells; |
130 |
|
131 |
double* waterX = new double[testWaters]; |
132 |
double* waterX = new double[testWaters]; |
133 |
double* waterX = new double[testWaters]; |
134 |
|
135 |
double x0 = 0.0 - ( testBox * 0.5 ); |
136 |
double y0 = 0.0 - ( testBox * 0.5 ); |
137 |
double z0 = 0.0 - ( testBox * 0.5 ); |
138 |
|
139 |
|
140 |
// create an fcc lattice in the water box. |
141 |
|
142 |
int ndx = 0; |
143 |
for( i=0; i < nCells; i++ ){ |
144 |
for( j=0; j < nCells; j++ ){ |
145 |
for( k=0; k < nCells; k++ ){ |
146 |
|
147 |
waterX[ndx] = i * waterCell + x0; |
148 |
waterY[ndx] = j * waterCell + y0; |
149 |
waterZ[ndx] = k * waterCell + z0; |
150 |
ndx++; |
151 |
|
152 |
waterX[ndx] = i * waterCell + 0.5 * waterCell + x0; |
153 |
waterY[ndx] = j * waterCell + 0.5 * waterCell + y0; |
154 |
waterZ[ndx] = k * waterCell + z0; |
155 |
ndx++; |
156 |
|
157 |
waterX[ndx] = i * waterCell + x0; |
158 |
waterY[ndx] = j * waterCell + 0.5 * waterCell + y0; |
159 |
waterZ[ndx] = k * waterCell + 0.5 * waterCell + z0; |
160 |
ndx++; |
161 |
|
162 |
waterX[ndx] = i * waterCell + 0.5 * waterCell + x0; |
163 |
waterY[ndx] = j * waterCell + y0; |
164 |
waterZ[ndx] = k * waterCell + 0.5 * waterCell + z0; |
165 |
ndx++; |
166 |
} |
167 |
} |
168 |
} |
169 |
|
170 |
// calculate the number of water's displaced by our lipid. |
171 |
|
172 |
testSite.rot[0][0] = 1.0; |
173 |
testSite.rot[0][1] = 0.0; |
174 |
testSite.rot[0][2] = 0.0; |
175 |
|
176 |
testSite.rot[1][0] = 0.0; |
177 |
testSite.rot[1][1] = 1.0; |
178 |
testSite.rot[1][2] = 0.0; |
179 |
|
180 |
testSite.rot[2][0] = 0.0; |
181 |
testSite.rot[2][1] = 0.0; |
182 |
testSite.rot[2][2] = 1.0; |
183 |
|
184 |
testSite.pos[0] = 0.0; |
185 |
testSite.pos[1] = 0.0; |
186 |
testSite.pos[2] = 0.0; |
187 |
|
188 |
lipidLocate->placeMol( testSite.pos, testSite.rot, atoms, 0 ); |
189 |
|
190 |
int *isActive = new int[testWaters]; |
191 |
for(i=0; i<testWaters; i++) isActive[i] = 1; |
192 |
|
193 |
int n_deleted = 0; |
194 |
double dx, dy, dz; |
195 |
double dx2, dy2, dz2, dSqr; |
196 |
double rCutSqr = water_padding * water_padding; |
197 |
|
198 |
for(i=0; ( (i<testWaters) && isActive[i] ); i++){ |
199 |
for(j=0; ( (j<lipidNatoms) && isActive[i] ); j++){ |
200 |
|
201 |
dx = waterX[i] - atoms[j]->getX(); |
202 |
dy = waterY[i] - atoms[j]->getY(); |
203 |
dz = waterZ[i] - atoms[j]->getZ(); |
204 |
|
205 |
map( dx, dy, dz, testBox, testBox, testBox ); |
206 |
|
207 |
dx2 = dx * dx; |
208 |
dy2 = dy * dy; |
209 |
dz2 = dz * dz; |
210 |
|
211 |
dSqr = dx2 + dy2 + dz2; |
212 |
if( dSqr < rCutSqr ){ |
213 |
isActive[i] = 0; |
214 |
n_deleted++; |
215 |
} |
216 |
} |
217 |
} |
218 |
|
219 |
int targetWaters = nWaters + n_deleted * nLipids; |
220 |
|
221 |
// find the best box size for the sim |
222 |
|
223 |
int testTot; |
224 |
int done = 0; |
225 |
ndx = 0; |
226 |
while( !done ){ |
227 |
|
228 |
ndx++; |
229 |
testTot = 4 * ndx * ndx * ndx; |
230 |
|
231 |
if( testTot >= targetWaters ) done = 1; |
232 |
} |
233 |
|
234 |
nCells = ndx; |
235 |
|
236 |
|
237 |
// create the new water box to the new specifications |
238 |
|
239 |
int newWaters = nCells * nCells * nCells * 4; |
240 |
|
241 |
delete[] waterX; |
242 |
delete[] waterY; |
243 |
delete[] waterZ; |
244 |
|
245 |
waterX = new double[newWater]; |
246 |
waterY = new double[newWater]; |
247 |
waterZ = new double[newWater]; |
248 |
|
249 |
double box_x = waterCell * nCells; |
250 |
double box_y = waterCell * nCells; |
251 |
double box_z = waterCell * nCells; |
252 |
|
253 |
// create an fcc lattice in the water box. |
254 |
|
255 |
ndx = 0; |
256 |
for( i=0; i < nCells; i++ ){ |
257 |
for( j=0; j < nCells; j++ ){ |
258 |
for( k=0; k < nCells; k++ ){ |
259 |
|
260 |
waterX[ndx] = i * waterCell; |
261 |
waterY[ndx] = j * waterCell; |
262 |
waterZ[ndx] = k * waterCell; |
263 |
ndx++; |
264 |
|
265 |
waterX[ndx] = i * waterCell + 0.5 * waterCell; |
266 |
waterY[ndx] = j * waterCell + 0.5 * waterCell; |
267 |
waterZ[ndx] = k * waterCell; |
268 |
ndx++; |
269 |
|
270 |
waterX[ndx] = i * waterCell; |
271 |
waterY[ndx] = j * waterCell + 0.5 * waterCell; |
272 |
waterZ[ndx] = k * waterCell + 0.5 * waterCell; |
273 |
ndx++; |
274 |
|
275 |
waterX[ndx] = i * waterCell + 0.5 * waterCell; |
276 |
waterY[ndx] = j * waterCell; |
277 |
waterZ[ndx] = k * waterCell + 0.5 * waterCell; |
278 |
ndx++; |
279 |
} |
280 |
} |
281 |
} |
282 |
|
283 |
|
284 |
|
285 |
|
286 |
|
287 |
|
288 |
|
289 |
|
290 |
|
291 |
|
292 |
|
293 |
|
294 |
|
295 |
|
296 |
// create the real MoLocator and Atom arrays |
297 |
|
298 |
nAtoms = 0; |
299 |
molIndex = 0; |
300 |
locate = new MoLocator*[bsInfo.nComponents]; |
301 |
molSeq = new int[bsInfo.totNmol]; |
302 |
molStart = new int[bsInfo.totNmol]; |
303 |
for(i=0; i<bsInfo.nComponents; i++){ |
304 |
locate[i] = new MoLocator( bsInfo.compStamps[i] ); |
305 |
for(j=0; j<bsInfo.componentsNmol[i]; j++){ |
306 |
molSeq[molIndex] = i; |
307 |
molStart[molIndex] = nAtoms; |
308 |
molIndex++; |
309 |
nAtoms += bsInfo.compStamps[i]->getNAtoms(); |
310 |
} |
311 |
} |
312 |
|
313 |
Atom::createArrays( nAtoms ); |
314 |
atoms = new Atom*[nAtoms]; |
315 |
|
316 |
|
317 |
// find the width, height, and length of the molecule |
318 |
|
319 |
|
320 |
|
321 |
|
322 |
} |
323 |
|
324 |
|
325 |
|
326 |
int Old_buildRandomBilayer( void ){ |
327 |
|
328 |
int i,j,k; |
329 |
int nAtoms, atomIndex, molIndex, molID; |
330 |
int* molSeq; |
331 |
int* molMap; |
332 |
int* molStart; |
333 |
int* cardDeck; |
334 |
int deckSize; |
335 |
int rSite, rCard; |
336 |
double cell; |
337 |
int nCells, nSites, siteIndex; |
338 |
double rot[3][3]; |
339 |
double pos[3]; |
340 |
|
341 |
Atom** atoms; |
342 |
SimInfo* simnfo; |
343 |
DumpWriter* writer; |
344 |
MoLocator** locate; |
345 |
|
346 |
// initialize functions and variables |
347 |
|
348 |
srand48( RAND_SEED ); |
349 |
molSeq = NULL; |
350 |
molStart = NULL; |
351 |
molMap = NULL; |
352 |
cardDeck = NULL; |
353 |
atoms = NULL; |
354 |
locate = NULL; |
355 |
simnfo = NULL; |
356 |
writer = NULL; |
357 |
|
358 |
// calculate the number of cells in the fcc box |
359 |
|
360 |
nCells = 0; |
361 |
nSites = 0; |
362 |
while( nSites < bsInfo.totNmol ){ |
363 |
nCells++; |
364 |
nSites = 4.0 * pow( (double)nCells, 3.0 ); |
365 |
} |
366 |
|
367 |
|
368 |
// create the molMap and cardDeck arrays |
369 |
|
370 |
molMap = new int[nSites]; |
371 |
cardDeck = new int[nSites]; |
372 |
|
373 |
for(i=0; i<nSites; i++){ |
374 |
molMap[i] = -1; |
375 |
cardDeck[i] = i; |
376 |
} |
377 |
|
378 |
// randomly place the molecules on the sites |
379 |
|
380 |
deckSize = nSites; |
381 |
for(i=0; i<bsInfo.totNmol; i++){ |
382 |
rCard = (int)( deckSize * drand48() ); |
383 |
rSite = cardDeck[rCard]; |
384 |
molMap[rSite] = i; |
385 |
|
386 |
// book keep the card deck; |
387 |
|
388 |
deckSize--; |
389 |
cardDeck[rCard] = cardDeck[deckSize]; |
390 |
} |
391 |
|
392 |
|
393 |
// create the MoLocator and Atom arrays |
394 |
|
395 |
nAtoms = 0; |
396 |
molIndex = 0; |
397 |
locate = new MoLocator*[bsInfo.nComponents]; |
398 |
molSeq = new int[bsInfo.totNmol]; |
399 |
molStart = new int[bsInfo.totNmol]; |
400 |
for(i=0; i<bsInfo.nComponents; i++){ |
401 |
locate[i] = new MoLocator( bsInfo.compStamps[i] ); |
402 |
for(j=0; j<bsInfo.componentsNmol[i]; j++){ |
403 |
molSeq[molIndex] = i; |
404 |
molStart[molIndex] = nAtoms; |
405 |
molIndex++; |
406 |
nAtoms += bsInfo.compStamps[i]->getNAtoms(); |
407 |
} |
408 |
} |
409 |
|
410 |
Atom::createArrays( nAtoms ); |
411 |
atoms = new Atom*[nAtoms]; |
412 |
|
413 |
|
414 |
// place the molecules at each FCC site |
415 |
|
416 |
cell = 5.0; |
417 |
for(i=0; i<bsInfo.nComponents; i++){ |
418 |
if(cell < locate[i]->getMaxLength() ) cell = locate[i]->getMaxLength(); |
419 |
} |
420 |
cell *= 1.2; // add a little buffer |
421 |
|
422 |
cell *= M_SQRT2; |
423 |
|
424 |
siteIndex = 0; |
425 |
for(i=0; i<nCells; i++){ |
426 |
for(j=0; j<nCells; j++){ |
427 |
for(k=0; k<nCells; k++){ |
428 |
|
429 |
if( molMap[siteIndex] >= 0 ){ |
430 |
pos[0] = i * cell; |
431 |
pos[1] = j * cell; |
432 |
pos[2] = k * cell; |
433 |
|
434 |
getRandomRot( rot ); |
435 |
molID = molSeq[molMap[siteIndex]]; |
436 |
atomIndex = molStart[ molMap[siteIndex] ]; |
437 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
438 |
} |
439 |
siteIndex++; |
440 |
|
441 |
if( molMap[siteIndex] >= 0 ){ |
442 |
pos[0] = i * cell + (0.5 * cell); |
443 |
pos[1] = j * cell; |
444 |
pos[2] = k * cell + (0.5 * cell); |
445 |
|
446 |
getRandomRot( rot ); |
447 |
molID = molSeq[molMap[siteIndex]]; |
448 |
atomIndex = molStart[ molMap[siteIndex] ]; |
449 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
450 |
} |
451 |
siteIndex++; |
452 |
|
453 |
if( molMap[siteIndex] >= 0 ){ |
454 |
pos[0] = i * cell + (0.5 * cell); |
455 |
pos[1] = j * cell + (0.5 * cell); |
456 |
pos[2] = k * cell; |
457 |
|
458 |
getRandomRot( rot ); |
459 |
molID = molSeq[molMap[siteIndex]]; |
460 |
atomIndex = molStart[ molMap[siteIndex] ]; |
461 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
462 |
} |
463 |
siteIndex++; |
464 |
|
465 |
if( molMap[siteIndex] >= 0 ){ |
466 |
pos[0] = i * cell; |
467 |
pos[1] = j * cell + (0.5 * cell); |
468 |
pos[2] = k * cell + (0.5 * cell); |
469 |
|
470 |
getRandomRot( rot ); |
471 |
molID = molSeq[molMap[siteIndex]]; |
472 |
atomIndex = molStart[ molMap[siteIndex] ]; |
473 |
locate[molID]->placeMol( pos, rot, atoms, atomIndex ); |
474 |
} |
475 |
siteIndex++; |
476 |
} |
477 |
} |
478 |
} |
479 |
|
480 |
// set up the SimInfo object |
481 |
|
482 |
bsInfo.boxX = nCells * cell; |
483 |
bsInfo.boxY = nCells * cell; |
484 |
bsInfo.boxZ = nCells * cell; |
485 |
|
486 |
simnfo = new SimInfo(); |
487 |
simnfo->n_atoms = nAtoms; |
488 |
simnfo->box_x = bsInfo.boxX; |
489 |
simnfo->box_y = bsInfo.boxY; |
490 |
simnfo->box_z = bsInfo.boxZ; |
491 |
|
492 |
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
493 |
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
494 |
|
495 |
simnfo->atoms = atoms; |
496 |
|
497 |
// set up the writer and write out |
498 |
|
499 |
writer = new DumpWriter( simnfo ); |
500 |
writer->writeFinal(); |
501 |
|
502 |
// clean up the memory |
503 |
|
504 |
if( molMap != NULL ) delete[] molMap; |
505 |
if( cardDeck != NULL ) delete[] cardDeck; |
506 |
if( locate != NULL ){ |
507 |
for(i=0; i<bsInfo.nComponents; i++){ |
508 |
delete locate[i]; |
509 |
} |
510 |
delete[] locate; |
511 |
} |
512 |
if( atoms != NULL ){ |
513 |
for(i=0; i<nAtoms; i++){ |
514 |
delete atoms[i]; |
515 |
} |
516 |
Atom::destroyArrays(); |
517 |
delete[] atoms; |
518 |
} |
519 |
if( molSeq != NULL ) delete[] molSeq; |
520 |
if( simnfo != NULL ) delete simnfo; |
521 |
if( writer != NULL ) delete writer; |
522 |
|
523 |
return 1; |
524 |
} |
525 |
|
526 |
|
527 |
void getRandomRot( double rot[3][3] ){ |
528 |
|
529 |
double theta, phi, psi; |
530 |
double cosTheta; |
531 |
|
532 |
// select random phi, psi, and cosTheta |
533 |
|
534 |
phi = 2.0 * M_PI * drand48(); |
535 |
psi = 2.0 * M_PI * drand48(); |
536 |
cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 |
537 |
|
538 |
theta = acos( cosTheta ); |
539 |
|
540 |
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
541 |
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
542 |
rot[0][2] = sin(theta) * sin(psi); |
543 |
|
544 |
rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
545 |
rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
546 |
rot[1][2] = sin(theta) * cos(psi); |
547 |
|
548 |
rot[2][0] = sin(phi) * sin(theta); |
549 |
rot[2][1] = -cos(phi) * sin(theta); |
550 |
rot[2][2] = cos(theta); |
551 |
} |
552 |
|
553 |
|
554 |
|
555 |
void map( double &x, double &y, double &z, |
556 |
double boxX, double boxY, double boxZ ){ |
557 |
|
558 |
if(x < 0) x -= boxX * (double)( (int)( (x / boxX) - 0.5 ) ); |
559 |
else x -= boxX * (double)( (int)( (x / boxX ) + 0.5)); |
560 |
|
561 |
if(y < 0) y -= boxY * (double)( (int)( (y / boxY) - 0.5 ) ); |
562 |
else y -= boxY * (double)( (int)( (y / boxY ) + 0.5)); |
563 |
|
564 |
if(z < 0) z -= boxZ * (double)( (int)( (z / boxZ) - 0.5 ) ); |
565 |
else z -= boxZ * (double)( (int)( (z / boxZ ) + 0.5)); |
566 |
} |