13 |
|
#include "bilayerSys.hpp" |
14 |
|
|
15 |
|
|
16 |
+ |
|
17 |
+ |
void map( double &x, double &y, double &z, |
18 |
+ |
double boxX, double boxY, double boxZ ); |
19 |
+ |
|
20 |
|
int buildRandomBilayer( void ); |
21 |
|
|
22 |
|
void getRandomRot( double rot[3][3] ); |
36 |
|
} |
37 |
|
|
38 |
|
|
35 |
– |
|
39 |
|
int buildRandomBilayer( void ){ |
40 |
+ |
|
41 |
+ |
typedef struct{ |
42 |
+ |
double rot[3][3]; |
43 |
+ |
double pos[3]; |
44 |
+ |
} coord; |
45 |
+ |
|
46 |
+ |
|
47 |
+ |
const double waterRho = 0.0334; // number density per cubic angstrom |
48 |
+ |
const double waterVol = 4.0 / water_rho; // volume occupied by 4 waters |
49 |
+ |
const double waterCell = 4.929; // fcc unit cell length |
50 |
+ |
|
51 |
+ |
const double water_padding = 2.5; |
52 |
+ |
const double lipid_spaceing = 2.5; |
53 |
+ |
|
54 |
+ |
|
55 |
+ |
int i,j,k; |
56 |
+ |
int nAtoms, atomIndex, molIndex, molID; |
57 |
+ |
int* molSeq; |
58 |
+ |
int* molMap; |
59 |
+ |
int* molStart; |
60 |
+ |
int* cardDeck; |
61 |
+ |
int deckSize; |
62 |
+ |
int rSite, rCard; |
63 |
+ |
double cell; |
64 |
+ |
int nCells, nSites, siteIndex; |
65 |
+ |
|
66 |
+ |
coord *siteArray; |
67 |
+ |
coord testSite; |
68 |
+ |
|
69 |
+ |
MoleculeStamp* lipidStamp; |
70 |
+ |
MoleculeStamp* waterStamp; |
71 |
+ |
MoLocator *lipidLocate; |
72 |
+ |
MoLocator *waterLocate |
73 |
+ |
int foundLipid, foundWater; |
74 |
+ |
int nLipids, lipiNatoms, nWaters; |
75 |
+ |
double testBox, maxLength; |
76 |
+ |
|
77 |
+ |
srand48( RAND_SEED ); |
78 |
+ |
|
79 |
+ |
|
80 |
+ |
// set the the lipidStamp |
81 |
+ |
|
82 |
+ |
foundLipid = 0; |
83 |
+ |
for(i=0; i<bsInfo.nComponents; i++){ |
84 |
+ |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ |
85 |
+ |
|
86 |
+ |
foundlipid = 1; |
87 |
+ |
lipidStamp = bsInfo.compStamps[i]; |
88 |
+ |
nLipids = bsInfo.componentsNmol[i]; |
89 |
+ |
} |
90 |
+ |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ |
91 |
+ |
|
92 |
+ |
foundWater = 1; |
93 |
+ |
waterStamp = bsInfo.compStamps[i]; |
94 |
+ |
nWaters = bsInfo.componentsNmol[i]; |
95 |
+ |
} |
96 |
+ |
} |
97 |
+ |
if( !foundLipid ){ |
98 |
+ |
sprintf(painCave.errMsg, |
99 |
+ |
"Could not find lipid \"%s\" in the bass file.\n", |
100 |
+ |
bsInfo.lipidName ); |
101 |
+ |
painCave.isFatal = 1; |
102 |
+ |
simError(); |
103 |
+ |
} |
104 |
+ |
if( !foundWater ){ |
105 |
+ |
sprintf(painCave.errMsg, |
106 |
+ |
"Could not find water \"%s\" in the bass file.\n", |
107 |
+ |
bsInfo.waterName ); |
108 |
+ |
painCave.isFatal = 1; |
109 |
+ |
simError(); |
110 |
+ |
} |
111 |
+ |
|
112 |
+ |
//create the temp Molocator and atom Arrays |
113 |
+ |
|
114 |
+ |
lipidLocate = new MoLocator( lipidStamp ); |
115 |
+ |
lipidNatoms = lipidStamp->getNAtoms(); |
116 |
+ |
maxLength = lipidLocate->getMaxLength(); |
117 |
+ |
|
118 |
+ |
waterLocate = new MoLocator( waterStamp ); |
119 |
+ |
|
120 |
+ |
nAtoms = nLipids * lipidNatoms; |
121 |
+ |
|
122 |
+ |
Atom::createArrays( nAtoms ); |
123 |
+ |
atoms = new Atom*[nAtoms]; |
124 |
+ |
|
125 |
+ |
// create the test box for initial water displacement |
126 |
+ |
|
127 |
+ |
testBox = maxLength + waterCell * 4.0; // pad with 4 cells |
128 |
+ |
int nCells = (int)( testBox / waterCell + 1.0 ); |
129 |
+ |
int testWaters = 4 * nCells * nCells * nCells; |
130 |
+ |
|
131 |
+ |
double* waterX = new double[testWaters]; |
132 |
+ |
double* waterX = new double[testWaters]; |
133 |
+ |
double* waterX = new double[testWaters]; |
134 |
+ |
|
135 |
+ |
double x0 = 0.0 - ( testBox * 0.5 ); |
136 |
+ |
double y0 = 0.0 - ( testBox * 0.5 ); |
137 |
+ |
double z0 = 0.0 - ( testBox * 0.5 ); |
138 |
+ |
|
139 |
+ |
|
140 |
+ |
// create an fcc lattice in the water box. |
141 |
+ |
|
142 |
+ |
int ndx = 0; |
143 |
+ |
for( i=0; i < nCells; i++ ){ |
144 |
+ |
for( j=0; j < nCells; j++ ){ |
145 |
+ |
for( k=0; k < nCells; k++ ){ |
146 |
+ |
|
147 |
+ |
waterX[ndx] = i * waterCell + x0; |
148 |
+ |
waterY[ndx] = j * waterCell + y0; |
149 |
+ |
waterZ[ndx] = k * waterCell + z0; |
150 |
+ |
ndx++; |
151 |
+ |
|
152 |
+ |
waterX[ndx] = i * waterCell + 0.5 * waterCell + x0; |
153 |
+ |
waterY[ndx] = j * waterCell + 0.5 * waterCell + y0; |
154 |
+ |
waterZ[ndx] = k * waterCell + z0; |
155 |
+ |
ndx++; |
156 |
+ |
|
157 |
+ |
waterX[ndx] = i * waterCell + x0; |
158 |
+ |
waterY[ndx] = j * waterCell + 0.5 * waterCell + y0; |
159 |
+ |
waterZ[ndx] = k * waterCell + 0.5 * waterCell + z0; |
160 |
+ |
ndx++; |
161 |
+ |
|
162 |
+ |
waterX[ndx] = i * waterCell + 0.5 * waterCell + x0; |
163 |
+ |
waterY[ndx] = j * waterCell + y0; |
164 |
+ |
waterZ[ndx] = k * waterCell + 0.5 * waterCell + z0; |
165 |
+ |
ndx++; |
166 |
+ |
} |
167 |
+ |
} |
168 |
+ |
} |
169 |
+ |
|
170 |
+ |
// calculate the number of water's displaced by our lipid. |
171 |
+ |
|
172 |
+ |
testSite.rot[0][0] = 1.0; |
173 |
+ |
testSite.rot[0][1] = 0.0; |
174 |
+ |
testSite.rot[0][2] = 0.0; |
175 |
+ |
|
176 |
+ |
testSite.rot[1][0] = 0.0; |
177 |
+ |
testSite.rot[1][1] = 1.0; |
178 |
+ |
testSite.rot[1][2] = 0.0; |
179 |
+ |
|
180 |
+ |
testSite.rot[2][0] = 0.0; |
181 |
+ |
testSite.rot[2][1] = 0.0; |
182 |
+ |
testSite.rot[2][2] = 1.0; |
183 |
+ |
|
184 |
+ |
testSite.pos[0] = 0.0; |
185 |
+ |
testSite.pos[1] = 0.0; |
186 |
+ |
testSite.pos[2] = 0.0; |
187 |
+ |
|
188 |
+ |
lipidLocate->placeMol( testSite.pos, testSite.rot, atoms, 0 ); |
189 |
+ |
|
190 |
+ |
int *isActive = new int[testWaters]; |
191 |
+ |
for(i=0; i<testWaters; i++) isActive[i] = 1; |
192 |
+ |
|
193 |
+ |
int n_deleted = 0; |
194 |
+ |
double dx, dy, dz; |
195 |
+ |
double dx2, dy2, dz2, dSqr; |
196 |
+ |
double rCutSqr = water_padding * water_padding; |
197 |
+ |
|
198 |
+ |
for(i=0; ( (i<testWaters) && isActive[i] ); i++){ |
199 |
+ |
for(j=0; ( (j<lipidNatoms) && isActive[i] ); j++){ |
200 |
+ |
|
201 |
+ |
dx = waterX[i] - atoms[j]->getX(); |
202 |
+ |
dy = waterY[i] - atoms[j]->getY(); |
203 |
+ |
dz = waterZ[i] - atoms[j]->getZ(); |
204 |
+ |
|
205 |
+ |
map( dx, dy, dz, testBox, testBox, testBox ); |
206 |
+ |
|
207 |
+ |
dx2 = dx * dx; |
208 |
+ |
dy2 = dy * dy; |
209 |
+ |
dz2 = dz * dz; |
210 |
+ |
|
211 |
+ |
dSqr = dx2 + dy2 + dz2; |
212 |
+ |
if( dSqr < rCutSqr ){ |
213 |
+ |
isActive[i] = 0; |
214 |
+ |
n_deleted++; |
215 |
+ |
} |
216 |
+ |
} |
217 |
+ |
} |
218 |
+ |
|
219 |
+ |
int targetWaters = nWaters + n_deleted * nLipids; |
220 |
+ |
|
221 |
+ |
// find the best box size for the sim |
222 |
+ |
|
223 |
+ |
int testTot; |
224 |
+ |
int done = 0; |
225 |
+ |
ndx = 0; |
226 |
+ |
while( !done ){ |
227 |
+ |
|
228 |
+ |
ndx++; |
229 |
+ |
testTot = 4 * ndx * ndx * ndx; |
230 |
+ |
|
231 |
+ |
if( testTot >= targetWaters ) done = 1; |
232 |
+ |
} |
233 |
+ |
|
234 |
+ |
nCells = ndx; |
235 |
+ |
|
236 |
+ |
|
237 |
+ |
// create the new water box to the new specifications |
238 |
+ |
|
239 |
+ |
int newWaters = nCells * nCells * nCells * 4; |
240 |
+ |
|
241 |
+ |
delete[] waterX; |
242 |
+ |
delete[] waterY; |
243 |
+ |
delete[] waterZ; |
244 |
+ |
|
245 |
+ |
waterX = new double[newWater]; |
246 |
+ |
waterY = new double[newWater]; |
247 |
+ |
waterZ = new double[newWater]; |
248 |
+ |
|
249 |
+ |
double box_x = waterCell * nCells; |
250 |
+ |
double box_y = waterCell * nCells; |
251 |
+ |
double box_z = waterCell * nCells; |
252 |
+ |
|
253 |
+ |
// create an fcc lattice in the water box. |
254 |
+ |
|
255 |
+ |
ndx = 0; |
256 |
+ |
for( i=0; i < nCells; i++ ){ |
257 |
+ |
for( j=0; j < nCells; j++ ){ |
258 |
+ |
for( k=0; k < nCells; k++ ){ |
259 |
+ |
|
260 |
+ |
waterX[ndx] = i * waterCell; |
261 |
+ |
waterY[ndx] = j * waterCell; |
262 |
+ |
waterZ[ndx] = k * waterCell; |
263 |
+ |
ndx++; |
264 |
+ |
|
265 |
+ |
waterX[ndx] = i * waterCell + 0.5 * waterCell; |
266 |
+ |
waterY[ndx] = j * waterCell + 0.5 * waterCell; |
267 |
+ |
waterZ[ndx] = k * waterCell; |
268 |
+ |
ndx++; |
269 |
+ |
|
270 |
+ |
waterX[ndx] = i * waterCell; |
271 |
+ |
waterY[ndx] = j * waterCell + 0.5 * waterCell; |
272 |
+ |
waterZ[ndx] = k * waterCell + 0.5 * waterCell; |
273 |
+ |
ndx++; |
274 |
+ |
|
275 |
+ |
waterX[ndx] = i * waterCell + 0.5 * waterCell; |
276 |
+ |
waterY[ndx] = j * waterCell; |
277 |
+ |
waterZ[ndx] = k * waterCell + 0.5 * waterCell; |
278 |
+ |
ndx++; |
279 |
+ |
} |
280 |
+ |
} |
281 |
+ |
} |
282 |
|
|
283 |
+ |
|
284 |
+ |
|
285 |
+ |
|
286 |
+ |
|
287 |
+ |
|
288 |
+ |
|
289 |
+ |
|
290 |
+ |
|
291 |
+ |
|
292 |
+ |
|
293 |
+ |
|
294 |
+ |
|
295 |
+ |
|
296 |
+ |
// create the real MoLocator and Atom arrays |
297 |
+ |
|
298 |
+ |
nAtoms = 0; |
299 |
+ |
molIndex = 0; |
300 |
+ |
locate = new MoLocator*[bsInfo.nComponents]; |
301 |
+ |
molSeq = new int[bsInfo.totNmol]; |
302 |
+ |
molStart = new int[bsInfo.totNmol]; |
303 |
+ |
for(i=0; i<bsInfo.nComponents; i++){ |
304 |
+ |
locate[i] = new MoLocator( bsInfo.compStamps[i] ); |
305 |
+ |
for(j=0; j<bsInfo.componentsNmol[i]; j++){ |
306 |
+ |
molSeq[molIndex] = i; |
307 |
+ |
molStart[molIndex] = nAtoms; |
308 |
+ |
molIndex++; |
309 |
+ |
nAtoms += bsInfo.compStamps[i]->getNAtoms(); |
310 |
+ |
} |
311 |
+ |
} |
312 |
+ |
|
313 |
+ |
Atom::createArrays( nAtoms ); |
314 |
+ |
atoms = new Atom*[nAtoms]; |
315 |
+ |
|
316 |
+ |
|
317 |
+ |
// find the width, height, and length of the molecule |
318 |
+ |
|
319 |
+ |
|
320 |
+ |
|
321 |
+ |
|
322 |
+ |
} |
323 |
+ |
|
324 |
+ |
|
325 |
+ |
|
326 |
+ |
int Old_buildRandomBilayer( void ){ |
327 |
+ |
|
328 |
|
int i,j,k; |
329 |
|
int nAtoms, atomIndex, molIndex, molID; |
330 |
|
int* molSeq; |
550 |
|
rot[2][2] = cos(theta); |
551 |
|
} |
552 |
|
|
553 |
+ |
|
554 |
+ |
|
555 |
+ |
void map( double &x, double &y, double &z, |
556 |
+ |
double boxX, double boxY, double boxZ ){ |
557 |
+ |
|
558 |
+ |
if(x < 0) x -= boxX * (double)( (int)( (x / boxX) - 0.5 ) ); |
559 |
+ |
else x -= boxX * (double)( (int)( (x / boxX ) + 0.5)); |
560 |
+ |
|
561 |
+ |
if(y < 0) y -= boxY * (double)( (int)( (y / boxY) - 0.5 ) ); |
562 |
+ |
else y -= boxY * (double)( (int)( (y / boxY ) + 0.5)); |
563 |
+ |
|
564 |
+ |
if(z < 0) z -= boxZ * (double)( (int)( (z / boxZ) - 0.5 ) ); |
565 |
+ |
else z -= boxZ * (double)( (int)( (z / boxZ ) + 0.5)); |
566 |
+ |
} |