| 1 | 
  | 
#ifdef IS_MPI | 
| 2 | 
< | 
 | 
| 3 | 
< | 
#include <cstdlib> | 
| 4 | 
< | 
#include <cstring> | 
| 2 | 
> | 
#include <iostream> | 
| 3 | 
> | 
#include <stdlib.h> | 
| 4 | 
> | 
#include <string.h> | 
| 5 | 
> | 
#include <math.h> | 
| 6 | 
  | 
#include <mpi.h> | 
| 6 | 
– | 
#include <mpi++.h> | 
| 7 | 
  | 
 | 
| 8 | 
  | 
#include "mpiSimulation.hpp" | 
| 9 | 
  | 
#include "simError.h" | 
| 10 | 
  | 
#include "fortranWrappers.hpp" | 
| 11 | 
  | 
#include "randomSPRNG.hpp" | 
| 12 | 
  | 
 | 
| 13 | 
– | 
 | 
| 13 | 
  | 
mpiSimulation* mpiSim; | 
| 14 | 
  | 
 | 
| 15 | 
  | 
mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) | 
| 16 | 
  | 
{ | 
| 17 | 
  | 
  entryPlug = the_entryPlug; | 
| 18 | 
< | 
  mpiPlug = new mpiSimData; | 
| 18 | 
> | 
  parallelData = new mpiSimData; | 
| 19 | 
  | 
   | 
| 20 | 
< | 
  mpiPlug->numberProcessors = MPI::COMM_WORLD.Get_size(); | 
| 21 | 
< | 
  mpiPlug->myNode = worldRank; | 
| 20 | 
> | 
  MPI_Comm_size(MPI_COMM_WORLD, &(parallelData->nProcessors) ); | 
| 21 | 
> | 
  parallelData->myNode = worldRank; | 
| 22 | 
  | 
 | 
| 23 | 
  | 
  MolToProcMap = new int[entryPlug->n_mol]; | 
| 24 | 
  | 
  MolComponentType = new int[entryPlug->n_mol]; | 
| 26 | 
– | 
 | 
| 25 | 
  | 
  AtomToProcMap = new int[entryPlug->n_atoms]; | 
| 26 | 
+ | 
  GroupToProcMap = new int[entryPlug->ngroup]; | 
| 27 | 
  | 
 | 
| 28 | 
  | 
  mpiSim = this; | 
| 29 | 
  | 
  wrapMeSimParallel( this ); | 
| 32 | 
  | 
 | 
| 33 | 
  | 
mpiSimulation::~mpiSimulation(){ | 
| 34 | 
  | 
   | 
| 35 | 
< | 
  delete mpiPlug; | 
| 35 | 
> | 
  delete[] MolToProcMap; | 
| 36 | 
> | 
  delete[] MolComponentType; | 
| 37 | 
> | 
  delete[] AtomToProcMap; | 
| 38 | 
> | 
  delete[] GroupToProcMap; | 
| 39 | 
> | 
 | 
| 40 | 
> | 
  delete parallelData; | 
| 41 | 
  | 
  // perhaps we should let fortran know the party is over. | 
| 42 | 
  | 
   | 
| 43 | 
  | 
} | 
| 44 | 
  | 
 | 
| 45 | 
< | 
int* mpiSimulation::divideLabor( void ){ | 
| 45 | 
> | 
void mpiSimulation::divideLabor( ){ | 
| 46 | 
  | 
 | 
| 43 | 
– | 
  int* globalIndex; | 
| 44 | 
– | 
 | 
| 47 | 
  | 
  int nComponents; | 
| 48 | 
  | 
  MoleculeStamp** compStamps; | 
| 49 | 
< | 
  randomSPRNG myRandom; | 
| 49 | 
> | 
  randomSPRNG *myRandom; | 
| 50 | 
  | 
  int* componentsNmol; | 
| 51 | 
  | 
  int* AtomsPerProc; | 
| 52 | 
+ | 
  int* GroupsPerProc; | 
| 53 | 
  | 
 | 
| 54 | 
  | 
  double numerator; | 
| 55 | 
  | 
  double denominator; | 
| 56 | 
  | 
  double precast; | 
| 57 | 
  | 
  double x, y, a; | 
| 58 | 
  | 
  int old_atoms, add_atoms, new_atoms; | 
| 59 | 
+ | 
  int old_groups, add_groups, new_groups; | 
| 60 | 
  | 
 | 
| 61 | 
  | 
  int nTarget; | 
| 62 | 
< | 
  int molIndex, atomIndex, compIndex, compStart; | 
| 62 | 
> | 
  int molIndex, atomIndex, groupIndex; | 
| 63 | 
  | 
  int done; | 
| 64 | 
< | 
  int nLocal, molLocal; | 
| 65 | 
< | 
  int i, index; | 
| 66 | 
< | 
  int smallDiff, bigDiff; | 
| 64 | 
> | 
  int i, j, loops, which_proc; | 
| 65 | 
> | 
  int nmol_global, nmol_local; | 
| 66 | 
> | 
  int ngroups_global, ngroups_local; | 
| 67 | 
> | 
  int natoms_global, natoms_local; | 
| 68 | 
> | 
  int ncutoff_groups, nAtomsInGroups; | 
| 69 | 
> | 
  int local_index; | 
| 70 | 
> | 
  int baseSeed = entryPlug->getSeed(); | 
| 71 | 
> | 
  CutoffGroupStamp* cg; | 
| 72 | 
  | 
 | 
| 64 | 
– | 
  int testSum; | 
| 65 | 
– | 
 | 
| 73 | 
  | 
  nComponents = entryPlug->nComponents; | 
| 74 | 
  | 
  compStamps = entryPlug->compStamps; | 
| 75 | 
  | 
  componentsNmol = entryPlug->componentsNmol; | 
| 76 | 
< | 
  AtomsPerProc = new int[mpiPlug->numberProcessors]; | 
| 76 | 
> | 
  AtomsPerProc = new int[parallelData->nProcessors]; | 
| 77 | 
> | 
  GroupsPerProc = new int[parallelData->nProcessors]; | 
| 78 | 
  | 
   | 
| 79 | 
< | 
  mpiPlug->nAtomsGlobal = entryPlug->n_atoms; | 
| 80 | 
< | 
  mpiPlug->nBondsGlobal = entryPlug->n_bonds; | 
| 81 | 
< | 
  mpiPlug->nBendsGlobal = entryPlug->n_bends; | 
| 82 | 
< | 
  mpiPlug->nTorsionsGlobal = entryPlug->n_torsions; | 
| 83 | 
< | 
  mpiPlug->nSRIGlobal = entryPlug->n_SRI; | 
| 84 | 
< | 
  mpiPlug->nMolGlobal = entryPlug->n_mol; | 
| 79 | 
> | 
  parallelData->nAtomsGlobal = entryPlug->n_atoms; | 
| 80 | 
> | 
  parallelData->nBondsGlobal = entryPlug->n_bonds; | 
| 81 | 
> | 
  parallelData->nBendsGlobal = entryPlug->n_bends; | 
| 82 | 
> | 
  parallelData->nTorsionsGlobal = entryPlug->n_torsions; | 
| 83 | 
> | 
  parallelData->nSRIGlobal = entryPlug->n_SRI; | 
| 84 | 
> | 
  parallelData->nGroupsGlobal = entryPlug->ngroup; | 
| 85 | 
> | 
  parallelData->nMolGlobal = entryPlug->n_mol; | 
| 86 | 
  | 
 | 
| 87 | 
< | 
  myRandom = new randomSPRNG(); | 
| 87 | 
> | 
  myRandom = new randomSPRNG( baseSeed ); | 
| 88 | 
  | 
 | 
| 89 | 
< | 
  a = (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; | 
| 89 | 
> | 
  a = 3.0 * (double)parallelData->nMolGlobal / (double)parallelData->nAtomsGlobal; | 
| 90 | 
  | 
 | 
| 91 | 
  | 
  // Initialize things that we'll send out later: | 
| 92 | 
< | 
  for (i = 0; i < mpiPlug->numberProcessors; i++ ) { | 
| 92 | 
> | 
  for (i = 0; i < parallelData->nProcessors; i++ ) { | 
| 93 | 
  | 
    AtomsPerProc[i] = 0; | 
| 94 | 
+ | 
    GroupsPerProc[i] = 0; | 
| 95 | 
  | 
  } | 
| 96 | 
< | 
  for (i = 0; i < mpiPlug->nMolGlobal; i++ ) { | 
| 96 | 
> | 
  for (i = 0; i < parallelData->nMolGlobal; i++ ) { | 
| 97 | 
  | 
    // default to an error condition: | 
| 98 | 
  | 
    MolToProcMap[i] = -1; | 
| 99 | 
  | 
    MolComponentType[i] = -1; | 
| 100 | 
  | 
  } | 
| 101 | 
< | 
  for (i = 0; i < mpiPlug->nAtomsGlobal; i++ ) { | 
| 101 | 
> | 
  for (i = 0; i < parallelData->nAtomsGlobal; i++ ) { | 
| 102 | 
  | 
    // default to an error condition: | 
| 103 | 
  | 
    AtomToProcMap[i] = -1; | 
| 104 | 
  | 
  } | 
| 105 | 
+ | 
  for (i = 0; i < parallelData->nGroupsGlobal; i++ ) { | 
| 106 | 
+ | 
    // default to an error condition: | 
| 107 | 
+ | 
    GroupToProcMap[i] = -1; | 
| 108 | 
+ | 
  } | 
| 109 | 
  | 
     | 
| 110 | 
< | 
  if (mpiPlug->myNode == 0) { | 
| 110 | 
> | 
  if (parallelData->myNode == 0) { | 
| 111 | 
  | 
    numerator = (double) entryPlug->n_atoms; | 
| 112 | 
< | 
    denominator = (double) mpiPlug->numberProcessors; | 
| 112 | 
> | 
    denominator = (double) parallelData->nProcessors; | 
| 113 | 
  | 
    precast = numerator / denominator; | 
| 114 | 
  | 
    nTarget = (int)( precast + 0.5 ); | 
| 115 | 
  | 
 | 
| 123 | 
  | 
    } | 
| 124 | 
  | 
 | 
| 125 | 
  | 
    atomIndex = 0; | 
| 126 | 
+ | 
    groupIndex = 0; | 
| 127 | 
  | 
 | 
| 128 | 
  | 
    for (i = 0; i < molIndex; i++ ) { | 
| 129 | 
  | 
 | 
| 135 | 
  | 
         | 
| 136 | 
  | 
        // Pick a processor at random | 
| 137 | 
  | 
 | 
| 138 | 
< | 
        which_proc = (int) (myRandom.getRandom() * mpiPlug->numberProcessors); | 
| 138 | 
> | 
        which_proc = (int) (myRandom->getRandom() * parallelData->nProcessors); | 
| 139 | 
  | 
 | 
| 140 | 
  | 
        // How many atoms does this processor have? | 
| 141 | 
  | 
         | 
| 142 | 
  | 
        old_atoms = AtomsPerProc[which_proc]; | 
| 143 | 
< | 
 | 
| 129 | 
< | 
        // If the processor already had too many atoms, just skip this | 
| 130 | 
< | 
        // processor and try again. | 
| 131 | 
< | 
 | 
| 132 | 
< | 
        if (old_atoms >= nTarget) continue; | 
| 133 | 
< | 
 | 
| 134 | 
< | 
        add_atoms = compStamps[MolComponentType[i]]->getNatoms(); | 
| 143 | 
> | 
        add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); | 
| 144 | 
  | 
        new_atoms = old_atoms + add_atoms; | 
| 145 | 
< | 
     | 
| 146 | 
< | 
        // If we can add this molecule to this processor without sending | 
| 147 | 
< | 
        // it above nTarget, then go ahead and do it: | 
| 148 | 
< | 
     | 
| 149 | 
< | 
        if (new_atoms <= nTarget) { | 
| 150 | 
< | 
          MolToProcMap[i] = which_proc; | 
| 151 | 
< | 
          AtomsPerProc[which_proc] += add_atoms; | 
| 143 | 
< | 
          for (j = 0 ; j < add_atoms; j++ ) { | 
| 144 | 
< | 
            atomIndex++; | 
| 145 | 
< | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 146 | 
< | 
          } | 
| 147 | 
< | 
          done = 1; | 
| 148 | 
< | 
          continue; | 
| 145 | 
> | 
 | 
| 146 | 
> | 
        old_groups = GroupsPerProc[which_proc]; | 
| 147 | 
> | 
        ncutoff_groups = compStamps[MolComponentType[i]]->getNCutoffGroups();  | 
| 148 | 
> | 
        nAtomsInGroups = 0; | 
| 149 | 
> | 
        for (j = 0; j < ncutoff_groups; j++) { | 
| 150 | 
> | 
          cg = compStamps[MolComponentType[i]]->getCutoffGroup(j); | 
| 151 | 
> | 
          nAtomsInGroups += cg->getNMembers(); | 
| 152 | 
  | 
        } | 
| 153 | 
+ | 
        add_groups = add_atoms - nAtomsInGroups + ncutoff_groups;         | 
| 154 | 
+ | 
        new_groups = old_groups + add_groups; | 
| 155 | 
  | 
 | 
| 156 | 
  | 
        // If we've been through this loop too many times, we need | 
| 157 | 
  | 
        // to just give up and assign the molecule to this processor | 
| 169 | 
  | 
          MolToProcMap[i] = which_proc; | 
| 170 | 
  | 
          AtomsPerProc[which_proc] += add_atoms; | 
| 171 | 
  | 
          for (j = 0 ; j < add_atoms; j++ ) { | 
| 172 | 
< | 
            atomIndex++; | 
| 173 | 
< | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 172 | 
> | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 173 | 
> | 
            atomIndex++; | 
| 174 | 
  | 
          } | 
| 175 | 
+ | 
          GroupsPerProc[which_proc] += add_groups; | 
| 176 | 
+ | 
          for (j=0; j < add_groups; j++) { | 
| 177 | 
+ | 
            GroupToProcMap[groupIndex] = which_proc; | 
| 178 | 
+ | 
            groupIndex++; | 
| 179 | 
+ | 
          } | 
| 180 | 
  | 
          done = 1; | 
| 181 | 
  | 
          continue; | 
| 182 | 
  | 
        } | 
| 183 | 
+ | 
     | 
| 184 | 
+ | 
        // If we can add this molecule to this processor without sending | 
| 185 | 
+ | 
        // it above nTarget, then go ahead and do it: | 
| 186 | 
+ | 
     | 
| 187 | 
+ | 
        if (new_atoms <= nTarget) { | 
| 188 | 
+ | 
          MolToProcMap[i] = which_proc; | 
| 189 | 
+ | 
          AtomsPerProc[which_proc] += add_atoms; | 
| 190 | 
+ | 
          for (j = 0 ; j < add_atoms; j++ ) { | 
| 191 | 
+ | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 192 | 
+ | 
            atomIndex++; | 
| 193 | 
+ | 
          } | 
| 194 | 
+ | 
          GroupsPerProc[which_proc] += add_groups; | 
| 195 | 
+ | 
          for (j=0; j < add_groups; j++) { | 
| 196 | 
+ | 
            GroupToProcMap[groupIndex] = which_proc; | 
| 197 | 
+ | 
            groupIndex++; | 
| 198 | 
+ | 
          } | 
| 199 | 
+ | 
          done = 1; | 
| 200 | 
+ | 
          continue; | 
| 201 | 
+ | 
        } | 
| 202 | 
  | 
 | 
| 174 | 
– | 
        // The only situation left is where old_atoms < nTarget, but | 
| 175 | 
– | 
        // new_atoms > nTarget.   We want to accept this with some | 
| 176 | 
– | 
        // probability that dies off the farther we are from nTarget | 
| 203 | 
  | 
 | 
| 204 | 
+ | 
        // The only situation left is when new_atoms > nTarget.  We | 
| 205 | 
+ | 
        // want to accept this with some probability that dies off the | 
| 206 | 
+ | 
        // farther we are from nTarget | 
| 207 | 
+ | 
 | 
| 208 | 
  | 
        // roughly:  x = new_atoms - nTarget | 
| 209 | 
  | 
        //           Pacc(x) = exp(- a * x) | 
| 210 | 
< | 
        // where a = 1 / (average atoms per molecule) | 
| 210 | 
> | 
        // where a = penalty / (average atoms per molecule) | 
| 211 | 
  | 
 | 
| 212 | 
  | 
        x = (double) (new_atoms - nTarget); | 
| 213 | 
< | 
        y = myRandom.getRandom(); | 
| 214 | 
< | 
         | 
| 215 | 
< | 
        if (exp(- a * x) > y) { | 
| 213 | 
> | 
        y = myRandom->getRandom(); | 
| 214 | 
> | 
       | 
| 215 | 
> | 
        if (y < exp(- a * x)) { | 
| 216 | 
  | 
          MolToProcMap[i] = which_proc; | 
| 217 | 
  | 
          AtomsPerProc[which_proc] += add_atoms; | 
| 218 | 
  | 
          for (j = 0 ; j < add_atoms; j++ ) { | 
| 219 | 
< | 
            atomIndex++; | 
| 220 | 
< | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 219 | 
> | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 220 | 
> | 
            atomIndex++; | 
| 221 | 
> | 
           } | 
| 222 | 
> | 
          GroupsPerProc[which_proc] += add_groups; | 
| 223 | 
> | 
          for (j=0; j < add_groups; j++) { | 
| 224 | 
> | 
            GroupToProcMap[groupIndex] = which_proc; | 
| 225 | 
> | 
            groupIndex++; | 
| 226 | 
  | 
          } | 
| 227 | 
  | 
          done = 1; | 
| 228 | 
  | 
          continue; | 
| 233 | 
  | 
      } | 
| 234 | 
  | 
    } | 
| 235 | 
  | 
 | 
| 201 | 
– | 
    // Spray out this nonsense to all other processors: | 
| 236 | 
  | 
 | 
| 237 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal,  | 
| 204 | 
< | 
                          MPI_INT, 0); | 
| 237 | 
> | 
    // Spray out this nonsense to all other processors: | 
| 238 | 
  | 
 | 
| 239 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal,  | 
| 240 | 
< | 
                          MPI_INT, 0); | 
| 239 | 
> | 
    MPI_Bcast(MolToProcMap, parallelData->nMolGlobal,  | 
| 240 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD); | 
| 241 | 
  | 
 | 
| 242 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal,  | 
| 243 | 
< | 
                          MPI_INT, 0); | 
| 242 | 
> | 
    MPI_Bcast(AtomToProcMap, parallelData->nAtomsGlobal,  | 
| 243 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD); | 
| 244 | 
  | 
 | 
| 245 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors, | 
| 246 | 
< | 
                          MPI_INT, 0);     | 
| 245 | 
> | 
    MPI_Bcast(GroupToProcMap, parallelData->nGroupsGlobal,  | 
| 246 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD); | 
| 247 | 
> | 
 | 
| 248 | 
> | 
    MPI_Bcast(MolComponentType, parallelData->nMolGlobal,  | 
| 249 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD); | 
| 250 | 
> | 
 | 
| 251 | 
> | 
    MPI_Bcast(AtomsPerProc, parallelData->nProcessors, | 
| 252 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD);     | 
| 253 | 
> | 
 | 
| 254 | 
> | 
    MPI_Bcast(GroupsPerProc, parallelData->nProcessors, | 
| 255 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD);     | 
| 256 | 
  | 
  } else { | 
| 257 | 
  | 
 | 
| 258 | 
  | 
    // Listen to your marching orders from processor 0: | 
| 259 | 
  | 
     | 
| 260 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal,  | 
| 261 | 
< | 
                          MPI_INT, 0); | 
| 260 | 
> | 
    MPI_Bcast(MolToProcMap, parallelData->nMolGlobal,  | 
| 261 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD); | 
| 262 | 
  | 
     | 
| 263 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal,  | 
| 264 | 
< | 
                          MPI_INT, 0); | 
| 263 | 
> | 
    MPI_Bcast(AtomToProcMap, parallelData->nAtomsGlobal,  | 
| 264 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD); | 
| 265 | 
  | 
 | 
| 266 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal,  | 
| 267 | 
< | 
                          MPI_INT, 0); | 
| 266 | 
> | 
    MPI_Bcast(GroupToProcMap, parallelData->nGroupsGlobal,  | 
| 267 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD); | 
| 268 | 
> | 
 | 
| 269 | 
> | 
    MPI_Bcast(MolComponentType, parallelData->nMolGlobal,  | 
| 270 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD); | 
| 271 | 
  | 
     | 
| 272 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors, | 
| 273 | 
< | 
                          MPI_INT, 0); | 
| 229 | 
< | 
  } | 
| 272 | 
> | 
    MPI_Bcast(AtomsPerProc, parallelData->nProcessors, | 
| 273 | 
> | 
              MPI_INT, 0, MPI_COMM_WORLD); | 
| 274 | 
  | 
 | 
| 275 | 
+ | 
    MPI_Bcast(GroupsPerProc, parallelData->nProcessors, | 
| 276 | 
+ | 
              MPI_INT, 0, MPI_COMM_WORLD); | 
| 277 | 
  | 
 | 
| 278 | 
+ | 
 | 
| 279 | 
+ | 
  } | 
| 280 | 
+ | 
 | 
| 281 | 
  | 
  // Let's all check for sanity: | 
| 282 | 
  | 
 | 
| 283 | 
  | 
  nmol_local = 0; | 
| 284 | 
< | 
  for (i = 0 ; i < mpiPlug->nMolGlobal; i++ ) { | 
| 285 | 
< | 
    if (MolToProcMap[i] == mpiPlug->myNode) { | 
| 284 | 
> | 
  for (i = 0 ; i < parallelData->nMolGlobal; i++ ) { | 
| 285 | 
> | 
    if (MolToProcMap[i] == parallelData->myNode) { | 
| 286 | 
  | 
      nmol_local++; | 
| 287 | 
  | 
    } | 
| 288 | 
  | 
  } | 
| 289 | 
  | 
 | 
| 290 | 
  | 
  natoms_local = 0; | 
| 291 | 
< | 
  for (i = 0; i < mpiPlug->nAtomsGlobal; i++) { | 
| 292 | 
< | 
    if (AtomToProcMap[i] == mpiPlug->myNode) { | 
| 291 | 
> | 
  for (i = 0; i < parallelData->nAtomsGlobal; i++) { | 
| 292 | 
> | 
    if (AtomToProcMap[i] == parallelData->myNode) { | 
| 293 | 
  | 
      natoms_local++;       | 
| 294 | 
  | 
    } | 
| 295 | 
  | 
  } | 
| 296 | 
  | 
 | 
| 297 | 
< | 
  MPI::COMM_WORLD.Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM); | 
| 298 | 
< | 
  MPI::COMM_WORLD.Allreduce(&natoms_local,&natoms_global,1,MPI_INT,MPI_SUM); | 
| 297 | 
> | 
  ngroups_local = 0; | 
| 298 | 
> | 
  for (i = 0; i < parallelData->nGroupsGlobal; i++) { | 
| 299 | 
> | 
    if (GroupToProcMap[i] == parallelData->myNode) { | 
| 300 | 
> | 
      ngroups_local++;       | 
| 301 | 
> | 
    } | 
| 302 | 
> | 
  } | 
| 303 | 
> | 
 | 
| 304 | 
> | 
  MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM,  | 
| 305 | 
> | 
                MPI_COMM_WORLD); | 
| 306 | 
> | 
 | 
| 307 | 
> | 
  MPI_Allreduce(&natoms_local,&natoms_global,1,MPI_INT, | 
| 308 | 
> | 
                MPI_SUM, MPI_COMM_WORLD); | 
| 309 | 
> | 
 | 
| 310 | 
> | 
  MPI_Allreduce(&ngroups_local,&ngroups_global,1,MPI_INT, | 
| 311 | 
> | 
                MPI_SUM, MPI_COMM_WORLD); | 
| 312 | 
  | 
   | 
| 313 | 
  | 
  if( nmol_global != entryPlug->n_mol ){ | 
| 314 | 
  | 
    sprintf( painCave.errMsg, | 
| 328 | 
  | 
    simError(); | 
| 329 | 
  | 
  } | 
| 330 | 
  | 
 | 
| 331 | 
+ | 
  if( ngroups_global != entryPlug->ngroup ){ | 
| 332 | 
+ | 
    sprintf( painCave.errMsg, | 
| 333 | 
+ | 
             "The sum of all ngroups_local, %d, did not equal the " | 
| 334 | 
+ | 
             "total number of cutoffGroups, %d.\n", | 
| 335 | 
+ | 
             ngroups_global, entryPlug->ngroup ); | 
| 336 | 
+ | 
    painCave.isFatal = 1; | 
| 337 | 
+ | 
    simError(); | 
| 338 | 
+ | 
  } | 
| 339 | 
+ | 
 | 
| 340 | 
  | 
  sprintf( checkPointMsg, | 
| 341 | 
  | 
           "Successfully divided the molecules among the processors.\n" ); | 
| 342 | 
  | 
  MPIcheckPoint(); | 
| 343 | 
  | 
 | 
| 344 | 
< | 
  mpiPlug->myNMol = nmol_local; | 
| 345 | 
< | 
  mpiPlug->myNlocal = natoms_local; | 
| 344 | 
> | 
  parallelData->nMolLocal = nmol_local; | 
| 345 | 
> | 
  parallelData->nAtomsLocal = natoms_local; | 
| 346 | 
> | 
  parallelData->nGroupsLocal = ngroups_local; | 
| 347 | 
  | 
 | 
| 348 | 
< | 
  globalIndex = new int[mpiPlug->myNlocal]; | 
| 348 | 
> | 
  globalAtomIndex.resize(parallelData->nAtomsLocal); | 
| 349 | 
> | 
  globalToLocalAtom.resize(parallelData->nAtomsGlobal); | 
| 350 | 
  | 
  local_index = 0; | 
| 351 | 
< | 
  for (i = 0; i < mpiPlug->nAtomsGlobal; i++) { | 
| 352 | 
< | 
    if (AtomToProcMap[i] == mpiPlug->myNode) { | 
| 353 | 
< | 
      globalIndex[local_index] =  | 
| 351 | 
> | 
  for (i = 0; i < parallelData->nAtomsGlobal; i++) { | 
| 352 | 
> | 
    if (AtomToProcMap[i] == parallelData->myNode) { | 
| 353 | 
> | 
      globalAtomIndex[local_index] = i; | 
| 354 | 
> | 
 | 
| 355 | 
> | 
      globalToLocalAtom[i] = local_index; | 
| 356 | 
> | 
      local_index++; | 
| 357 | 
> | 
       | 
| 358 | 
  | 
    } | 
| 359 | 
+ | 
    else | 
| 360 | 
+ | 
       globalToLocalAtom[i] = -1; | 
| 361 | 
  | 
  } | 
| 283 | 
– | 
   | 
| 362 | 
  | 
 | 
| 363 | 
+ | 
  globalGroupIndex.resize(parallelData->nGroupsLocal); | 
| 364 | 
+ | 
  globalToLocalGroup.resize(parallelData->nGroupsGlobal); | 
| 365 | 
+ | 
  local_index = 0; | 
| 366 | 
+ | 
  for (i = 0; i < parallelData->nGroupsGlobal; i++) { | 
| 367 | 
+ | 
    if (GroupToProcMap[i] == parallelData->myNode) { | 
| 368 | 
+ | 
      globalGroupIndex[local_index] = i; | 
| 369 | 
  | 
 | 
| 370 | 
+ | 
      globalToLocalGroup[i] = local_index; | 
| 371 | 
+ | 
      local_index++; | 
| 372 | 
+ | 
       | 
| 373 | 
+ | 
    } | 
| 374 | 
+ | 
    else | 
| 375 | 
+ | 
       globalToLocalGroup[i] = -1; | 
| 376 | 
+ | 
  } | 
| 377 | 
  | 
 | 
| 378 | 
< | 
   index = mpiPlug->myAtomStart; | 
| 379 | 
< | 
//   for( i=0; i<mpiPlug->myNlocal; i++){ | 
| 380 | 
< | 
//     globalIndex[i] = index; | 
| 381 | 
< | 
//     index++; | 
| 382 | 
< | 
//   } | 
| 383 | 
< | 
 | 
| 384 | 
< | 
//   return globalIndex; | 
| 378 | 
> | 
  globalMolIndex.resize(parallelData->nMolLocal); | 
| 379 | 
> | 
  globalToLocalMol.resize(parallelData->nMolGlobal);   | 
| 380 | 
> | 
  local_index = 0; | 
| 381 | 
> | 
  for (i = 0; i < parallelData->nMolGlobal; i++) { | 
| 382 | 
> | 
    if (MolToProcMap[i] == parallelData->myNode) { | 
| 383 | 
> | 
      globalMolIndex[local_index] = i; | 
| 384 | 
> | 
      globalToLocalMol[i] = local_index; | 
| 385 | 
> | 
      local_index++; | 
| 386 | 
> | 
    } | 
| 387 | 
> | 
    else | 
| 388 | 
> | 
      globalToLocalMol[i] = -1; | 
| 389 | 
> | 
  } | 
| 390 | 
> | 
   | 
| 391 | 
  | 
} | 
| 392 | 
  | 
 | 
| 393 | 
  | 
 | 
| 394 | 
  | 
void mpiSimulation::mpiRefresh( void ){ | 
| 395 | 
  | 
 | 
| 396 | 
  | 
  int isError, i; | 
| 397 | 
< | 
  int *globalIndex = new int[mpiPlug->myNlocal]; | 
| 397 | 
> | 
  int *globalAtomIndex = new int[parallelData->nAtomsLocal]; | 
| 398 | 
  | 
 | 
| 399 | 
< | 
  for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex(); | 
| 399 | 
> | 
  // Fortran indexing needs to be increased by 1 in order to get the 2 languages to | 
| 400 | 
> | 
  // not barf | 
| 401 | 
  | 
 | 
| 402 | 
+ | 
  for(i=0; i<parallelData->nAtomsLocal; i++) globalAtomIndex[i] = entryPlug->atoms[i]->getGlobalIndex()+1; | 
| 403 | 
  | 
   | 
| 404 | 
  | 
  isError = 0; | 
| 405 | 
< | 
  setFsimParallel( mpiPlug, &(entryPlug->n_atoms), globalIndex, &isError ); | 
| 405 | 
> | 
  setFsimParallel( parallelData, &(entryPlug->n_atoms), globalAtomIndex, &isError ); | 
| 406 | 
  | 
  if( isError ){ | 
| 407 | 
  | 
 | 
| 408 | 
  | 
    sprintf( painCave.errMsg, | 
| 411 | 
  | 
    simError(); | 
| 412 | 
  | 
  } | 
| 413 | 
  | 
 | 
| 414 | 
< | 
  delete[] globalIndex; | 
| 414 | 
> | 
  delete[] globalAtomIndex; | 
| 415 | 
  | 
 | 
| 416 | 
+ | 
 | 
| 417 | 
  | 
  sprintf( checkPointMsg, | 
| 418 | 
  | 
           " mpiRefresh successful.\n" ); | 
| 419 | 
  | 
  MPIcheckPoint(); |