| 1 |
|
#ifdef IS_MPI |
| 2 |
< |
|
| 3 |
< |
#include <cstdlib> |
| 4 |
< |
#include <cstring> |
| 2 |
> |
#include <iostream> |
| 3 |
> |
#include <stdlib.h> |
| 4 |
> |
#include <string.h> |
| 5 |
> |
#include <math.h> |
| 6 |
|
#include <mpi.h> |
| 6 |
– |
#include <mpi++.h> |
| 7 |
|
|
| 8 |
|
#include "mpiSimulation.hpp" |
| 9 |
|
#include "simError.h" |
| 10 |
|
#include "fortranWrappers.hpp" |
| 11 |
+ |
#include "randomSPRNG.hpp" |
| 12 |
|
|
| 12 |
– |
|
| 13 |
– |
|
| 14 |
– |
|
| 13 |
|
mpiSimulation* mpiSim; |
| 14 |
|
|
| 15 |
|
mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) |
| 16 |
|
{ |
| 17 |
|
entryPlug = the_entryPlug; |
| 18 |
< |
mpiPlug = new mpiSimData; |
| 18 |
> |
parallelData = new mpiSimData; |
| 19 |
|
|
| 20 |
< |
mpiPlug->numberProcessors = MPI::COMM_WORLD.Get_size(); |
| 21 |
< |
mpiPlug->myNode = worldRank; |
| 22 |
< |
|
| 20 |
> |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData->nProcessors) ); |
| 21 |
> |
parallelData->myNode = worldRank; |
| 22 |
> |
|
| 23 |
> |
MolToProcMap = new int[entryPlug->n_mol]; |
| 24 |
> |
MolComponentType = new int[entryPlug->n_mol]; |
| 25 |
> |
AtomToProcMap = new int[entryPlug->n_atoms]; |
| 26 |
> |
GroupToProcMap = new int[entryPlug->ngroup]; |
| 27 |
> |
|
| 28 |
|
mpiSim = this; |
| 29 |
|
wrapMeSimParallel( this ); |
| 30 |
|
} |
| 32 |
|
|
| 33 |
|
mpiSimulation::~mpiSimulation(){ |
| 34 |
|
|
| 35 |
< |
delete mpiPlug; |
| 35 |
> |
delete[] MolToProcMap; |
| 36 |
> |
delete[] MolComponentType; |
| 37 |
> |
delete[] AtomToProcMap; |
| 38 |
> |
delete[] GroupToProcMap; |
| 39 |
> |
|
| 40 |
> |
delete parallelData; |
| 41 |
|
// perhaps we should let fortran know the party is over. |
| 42 |
|
|
| 43 |
|
} |
| 44 |
|
|
| 45 |
+ |
void mpiSimulation::divideLabor( ){ |
| 46 |
|
|
| 38 |
– |
|
| 39 |
– |
int* mpiSimulation::divideLabor( void ){ |
| 40 |
– |
|
| 41 |
– |
int* globalIndex; |
| 42 |
– |
|
| 47 |
|
int nComponents; |
| 48 |
|
MoleculeStamp** compStamps; |
| 49 |
+ |
randomSPRNG *myRandom; |
| 50 |
|
int* componentsNmol; |
| 51 |
+ |
int* AtomsPerProc; |
| 52 |
+ |
int* GroupsPerProc; |
| 53 |
|
|
| 54 |
|
double numerator; |
| 55 |
|
double denominator; |
| 56 |
|
double precast; |
| 57 |
+ |
double x, y, a; |
| 58 |
+ |
int old_atoms, add_atoms, new_atoms; |
| 59 |
+ |
int old_groups, add_groups, new_groups; |
| 60 |
|
|
| 61 |
|
int nTarget; |
| 62 |
< |
int molIndex, atomIndex, compIndex, compStart; |
| 62 |
> |
int molIndex, atomIndex, groupIndex; |
| 63 |
|
int done; |
| 64 |
< |
int nLocal, molLocal; |
| 65 |
< |
int i, index; |
| 66 |
< |
int smallDiff, bigDiff; |
| 64 |
> |
int i, j, loops, which_proc; |
| 65 |
> |
int nmol_global, nmol_local; |
| 66 |
> |
int ngroups_global, ngroups_local; |
| 67 |
> |
int natoms_global, natoms_local; |
| 68 |
> |
int ncutoff_groups, nAtomsInGroups; |
| 69 |
> |
int local_index; |
| 70 |
> |
int baseSeed = entryPlug->getSeed(); |
| 71 |
> |
CutoffGroupStamp* cg; |
| 72 |
|
|
| 58 |
– |
int testSum; |
| 59 |
– |
|
| 73 |
|
nComponents = entryPlug->nComponents; |
| 74 |
|
compStamps = entryPlug->compStamps; |
| 75 |
|
componentsNmol = entryPlug->componentsNmol; |
| 76 |
+ |
AtomsPerProc = new int[parallelData->nProcessors]; |
| 77 |
+ |
GroupsPerProc = new int[parallelData->nProcessors]; |
| 78 |
+ |
|
| 79 |
+ |
parallelData->nAtomsGlobal = entryPlug->n_atoms; |
| 80 |
+ |
parallelData->nBondsGlobal = entryPlug->n_bonds; |
| 81 |
+ |
parallelData->nBendsGlobal = entryPlug->n_bends; |
| 82 |
+ |
parallelData->nTorsionsGlobal = entryPlug->n_torsions; |
| 83 |
+ |
parallelData->nSRIGlobal = entryPlug->n_SRI; |
| 84 |
+ |
parallelData->nGroupsGlobal = entryPlug->ngroup; |
| 85 |
+ |
parallelData->nMolGlobal = entryPlug->n_mol; |
| 86 |
|
|
| 87 |
< |
mpiPlug->nAtomsGlobal = entryPlug->n_atoms; |
| 65 |
< |
mpiPlug->nBondsGlobal = entryPlug->n_bonds; |
| 66 |
< |
mpiPlug->nBendsGlobal = entryPlug->n_bends; |
| 67 |
< |
mpiPlug->nTorsionsGlobal = entryPlug->n_torsions; |
| 68 |
< |
mpiPlug->nSRIGlobal = entryPlug->n_SRI; |
| 69 |
< |
mpiPlug->nMolGlobal = entryPlug->n_mol; |
| 87 |
> |
myRandom = new randomSPRNG( baseSeed ); |
| 88 |
|
|
| 89 |
< |
numerator = (double) entryPlug->n_atoms; |
| 90 |
< |
denominator = (double) mpiPlug->numberProcessors; |
| 91 |
< |
precast = numerator / denominator; |
| 92 |
< |
nTarget = (int)( precast + 0.5 ); |
| 93 |
< |
|
| 94 |
< |
molIndex = 0; |
| 95 |
< |
atomIndex = 0; |
| 96 |
< |
compIndex = 0; |
| 97 |
< |
compStart = 0; |
| 98 |
< |
for( i=0; i<(mpiPlug->numberProcessors-1); i++){ |
| 89 |
> |
a = 3.0 * (double)parallelData->nMolGlobal / (double)parallelData->nAtomsGlobal; |
| 90 |
> |
|
| 91 |
> |
// Initialize things that we'll send out later: |
| 92 |
> |
for (i = 0; i < parallelData->nProcessors; i++ ) { |
| 93 |
> |
AtomsPerProc[i] = 0; |
| 94 |
> |
GroupsPerProc[i] = 0; |
| 95 |
> |
} |
| 96 |
> |
for (i = 0; i < parallelData->nMolGlobal; i++ ) { |
| 97 |
> |
// default to an error condition: |
| 98 |
> |
MolToProcMap[i] = -1; |
| 99 |
> |
MolComponentType[i] = -1; |
| 100 |
> |
} |
| 101 |
> |
for (i = 0; i < parallelData->nAtomsGlobal; i++ ) { |
| 102 |
> |
// default to an error condition: |
| 103 |
> |
AtomToProcMap[i] = -1; |
| 104 |
> |
} |
| 105 |
> |
for (i = 0; i < parallelData->nGroupsGlobal; i++ ) { |
| 106 |
> |
// default to an error condition: |
| 107 |
> |
GroupToProcMap[i] = -1; |
| 108 |
> |
} |
| 109 |
|
|
| 110 |
< |
done = 0; |
| 111 |
< |
nLocal = 0; |
| 112 |
< |
molLocal = 0; |
| 110 |
> |
if (parallelData->myNode == 0) { |
| 111 |
> |
numerator = (double) entryPlug->n_atoms; |
| 112 |
> |
denominator = (double) parallelData->nProcessors; |
| 113 |
> |
precast = numerator / denominator; |
| 114 |
> |
nTarget = (int)( precast + 0.5 ); |
| 115 |
|
|
| 116 |
< |
if( i == mpiPlug->myNode ){ |
| 117 |
< |
mpiPlug->myMolStart = molIndex; |
| 118 |
< |
mpiPlug->myAtomStart = atomIndex; |
| 116 |
> |
// Build the array of molecule component types first |
| 117 |
> |
molIndex = 0; |
| 118 |
> |
for (i=0; i < nComponents; i++) { |
| 119 |
> |
for (j=0; j < componentsNmol[i]; j++) { |
| 120 |
> |
MolComponentType[molIndex] = i; |
| 121 |
> |
molIndex++; |
| 122 |
> |
} |
| 123 |
|
} |
| 124 |
+ |
|
| 125 |
+ |
atomIndex = 0; |
| 126 |
+ |
groupIndex = 0; |
| 127 |
+ |
|
| 128 |
+ |
for (i = 0; i < molIndex; i++ ) { |
| 129 |
+ |
|
| 130 |
+ |
done = 0; |
| 131 |
+ |
loops = 0; |
| 132 |
+ |
|
| 133 |
+ |
while( !done ){ |
| 134 |
+ |
loops++; |
| 135 |
+ |
|
| 136 |
+ |
// Pick a processor at random |
| 137 |
+ |
|
| 138 |
+ |
which_proc = (int) (myRandom->getRandom() * parallelData->nProcessors); |
| 139 |
+ |
|
| 140 |
+ |
// How many atoms does this processor have? |
| 141 |
+ |
|
| 142 |
+ |
old_atoms = AtomsPerProc[which_proc]; |
| 143 |
+ |
add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); |
| 144 |
+ |
new_atoms = old_atoms + add_atoms; |
| 145 |
+ |
|
| 146 |
+ |
old_groups = GroupsPerProc[which_proc]; |
| 147 |
+ |
ncutoff_groups = compStamps[MolComponentType[i]]->getNCutoffGroups(); |
| 148 |
+ |
nAtomsInGroups = 0; |
| 149 |
+ |
for (j = 0; j < ncutoff_groups; j++) { |
| 150 |
+ |
cg = compStamps[MolComponentType[i]]->getCutoffGroup(j); |
| 151 |
+ |
nAtomsInGroups += cg->getNMembers(); |
| 152 |
+ |
} |
| 153 |
+ |
add_groups = add_atoms - nAtomsInGroups + ncutoff_groups; |
| 154 |
+ |
new_groups = old_groups + add_groups; |
| 155 |
+ |
|
| 156 |
+ |
// If we've been through this loop too many times, we need |
| 157 |
+ |
// to just give up and assign the molecule to this processor |
| 158 |
+ |
// and be done with it. |
| 159 |
+ |
|
| 160 |
+ |
if (loops > 100) { |
| 161 |
+ |
sprintf( painCave.errMsg, |
| 162 |
+ |
"I've tried 100 times to assign molecule %d to a " |
| 163 |
+ |
" processor, but can't find a good spot.\n" |
| 164 |
+ |
"I'm assigning it at random to processor %d.\n", |
| 165 |
+ |
i, which_proc); |
| 166 |
+ |
painCave.isFatal = 0; |
| 167 |
+ |
simError(); |
| 168 |
+ |
|
| 169 |
+ |
MolToProcMap[i] = which_proc; |
| 170 |
+ |
AtomsPerProc[which_proc] += add_atoms; |
| 171 |
+ |
for (j = 0 ; j < add_atoms; j++ ) { |
| 172 |
+ |
AtomToProcMap[atomIndex] = which_proc; |
| 173 |
+ |
atomIndex++; |
| 174 |
+ |
} |
| 175 |
+ |
GroupsPerProc[which_proc] += add_groups; |
| 176 |
+ |
for (j=0; j < add_groups; j++) { |
| 177 |
+ |
GroupToProcMap[groupIndex] = which_proc; |
| 178 |
+ |
groupIndex++; |
| 179 |
+ |
} |
| 180 |
+ |
done = 1; |
| 181 |
+ |
continue; |
| 182 |
+ |
} |
| 183 |
|
|
| 184 |
< |
while( !done ){ |
| 185 |
< |
|
| 186 |
< |
if( (molIndex-compStart) >= componentsNmol[compIndex] ){ |
| 187 |
< |
compStart = molIndex; |
| 188 |
< |
compIndex++; |
| 189 |
< |
continue; |
| 190 |
< |
} |
| 184 |
> |
// If we can add this molecule to this processor without sending |
| 185 |
> |
// it above nTarget, then go ahead and do it: |
| 186 |
> |
|
| 187 |
> |
if (new_atoms <= nTarget) { |
| 188 |
> |
MolToProcMap[i] = which_proc; |
| 189 |
> |
AtomsPerProc[which_proc] += add_atoms; |
| 190 |
> |
for (j = 0 ; j < add_atoms; j++ ) { |
| 191 |
> |
AtomToProcMap[atomIndex] = which_proc; |
| 192 |
> |
atomIndex++; |
| 193 |
> |
} |
| 194 |
> |
GroupsPerProc[which_proc] += add_groups; |
| 195 |
> |
for (j=0; j < add_groups; j++) { |
| 196 |
> |
GroupToProcMap[groupIndex] = which_proc; |
| 197 |
> |
groupIndex++; |
| 198 |
> |
} |
| 199 |
> |
done = 1; |
| 200 |
> |
continue; |
| 201 |
> |
} |
| 202 |
|
|
| 203 |
< |
nLocal += compStamps[compIndex]->getNAtoms(); |
| 204 |
< |
atomIndex += compStamps[compIndex]->getNAtoms(); |
| 205 |
< |
molIndex++; |
| 206 |
< |
molLocal++; |
| 203 |
> |
|
| 204 |
> |
// The only situation left is when new_atoms > nTarget. We |
| 205 |
> |
// want to accept this with some probability that dies off the |
| 206 |
> |
// farther we are from nTarget |
| 207 |
> |
|
| 208 |
> |
// roughly: x = new_atoms - nTarget |
| 209 |
> |
// Pacc(x) = exp(- a * x) |
| 210 |
> |
// where a = penalty / (average atoms per molecule) |
| 211 |
> |
|
| 212 |
> |
x = (double) (new_atoms - nTarget); |
| 213 |
> |
y = myRandom->getRandom(); |
| 214 |
|
|
| 215 |
< |
if ( nLocal == nTarget ) done = 1; |
| 216 |
< |
|
| 217 |
< |
else if( nLocal < nTarget ){ |
| 218 |
< |
smallDiff = nTarget - nLocal; |
| 219 |
< |
} |
| 220 |
< |
else if( nLocal > nTarget ){ |
| 221 |
< |
bigDiff = nLocal - nTarget; |
| 222 |
< |
|
| 223 |
< |
if( bigDiff < smallDiff ) done = 1; |
| 224 |
< |
else{ |
| 225 |
< |
molIndex--; |
| 226 |
< |
molLocal--; |
| 227 |
< |
atomIndex -= compStamps[compIndex]->getNAtoms(); |
| 228 |
< |
nLocal -= compStamps[compIndex]->getNAtoms(); |
| 229 |
< |
done = 1; |
| 230 |
< |
} |
| 215 |
> |
if (y < exp(- a * x)) { |
| 216 |
> |
MolToProcMap[i] = which_proc; |
| 217 |
> |
AtomsPerProc[which_proc] += add_atoms; |
| 218 |
> |
for (j = 0 ; j < add_atoms; j++ ) { |
| 219 |
> |
AtomToProcMap[atomIndex] = which_proc; |
| 220 |
> |
atomIndex++; |
| 221 |
> |
} |
| 222 |
> |
GroupsPerProc[which_proc] += add_groups; |
| 223 |
> |
for (j=0; j < add_groups; j++) { |
| 224 |
> |
GroupToProcMap[groupIndex] = which_proc; |
| 225 |
> |
groupIndex++; |
| 226 |
> |
} |
| 227 |
> |
done = 1; |
| 228 |
> |
continue; |
| 229 |
> |
} else { |
| 230 |
> |
continue; |
| 231 |
> |
} |
| 232 |
> |
|
| 233 |
|
} |
| 234 |
|
} |
| 235 |
+ |
|
| 236 |
+ |
|
| 237 |
+ |
// Spray out this nonsense to all other processors: |
| 238 |
+ |
|
| 239 |
+ |
MPI_Bcast(MolToProcMap, parallelData->nMolGlobal, |
| 240 |
+ |
MPI_INT, 0, MPI_COMM_WORLD); |
| 241 |
+ |
|
| 242 |
+ |
MPI_Bcast(AtomToProcMap, parallelData->nAtomsGlobal, |
| 243 |
+ |
MPI_INT, 0, MPI_COMM_WORLD); |
| 244 |
+ |
|
| 245 |
+ |
MPI_Bcast(GroupToProcMap, parallelData->nGroupsGlobal, |
| 246 |
+ |
MPI_INT, 0, MPI_COMM_WORLD); |
| 247 |
+ |
|
| 248 |
+ |
MPI_Bcast(MolComponentType, parallelData->nMolGlobal, |
| 249 |
+ |
MPI_INT, 0, MPI_COMM_WORLD); |
| 250 |
+ |
|
| 251 |
+ |
MPI_Bcast(AtomsPerProc, parallelData->nProcessors, |
| 252 |
+ |
MPI_INT, 0, MPI_COMM_WORLD); |
| 253 |
+ |
|
| 254 |
+ |
MPI_Bcast(GroupsPerProc, parallelData->nProcessors, |
| 255 |
+ |
MPI_INT, 0, MPI_COMM_WORLD); |
| 256 |
+ |
} else { |
| 257 |
+ |
|
| 258 |
+ |
// Listen to your marching orders from processor 0: |
| 259 |
|
|
| 260 |
< |
if( i == mpiPlug->myNode ){ |
| 261 |
< |
mpiPlug->myMolEnd = (molIndex - 1); |
| 125 |
< |
mpiPlug->myAtomEnd = (atomIndex - 1); |
| 126 |
< |
mpiPlug->myNlocal = nLocal; |
| 127 |
< |
mpiPlug->myMol = molLocal; |
| 128 |
< |
} |
| 260 |
> |
MPI_Bcast(MolToProcMap, parallelData->nMolGlobal, |
| 261 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 262 |
|
|
| 263 |
< |
numerator = (double)( entryPlug->n_atoms - atomIndex ); |
| 264 |
< |
denominator = (double)( mpiPlug->numberProcessors - (i+1) ); |
| 265 |
< |
precast = numerator / denominator; |
| 266 |
< |
nTarget = (int)( precast + 0.5 ); |
| 263 |
> |
MPI_Bcast(AtomToProcMap, parallelData->nAtomsGlobal, |
| 264 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 265 |
> |
|
| 266 |
> |
MPI_Bcast(GroupToProcMap, parallelData->nGroupsGlobal, |
| 267 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 268 |
> |
|
| 269 |
> |
MPI_Bcast(MolComponentType, parallelData->nMolGlobal, |
| 270 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 271 |
> |
|
| 272 |
> |
MPI_Bcast(AtomsPerProc, parallelData->nProcessors, |
| 273 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 274 |
> |
|
| 275 |
> |
MPI_Bcast(GroupsPerProc, parallelData->nProcessors, |
| 276 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 277 |
> |
|
| 278 |
> |
|
| 279 |
|
} |
| 135 |
– |
|
| 136 |
– |
if( mpiPlug->myNode == mpiPlug->numberProcessors-1 ){ |
| 137 |
– |
mpiPlug->myMolStart = molIndex; |
| 138 |
– |
mpiPlug->myAtomStart = atomIndex; |
| 280 |
|
|
| 281 |
< |
nLocal = 0; |
| 141 |
< |
molLocal = 0; |
| 142 |
< |
while( compIndex < nComponents ){ |
| 143 |
< |
|
| 144 |
< |
if( (molIndex-compStart) >= componentsNmol[compIndex] ){ |
| 145 |
< |
compStart = molIndex; |
| 146 |
< |
compIndex++; |
| 147 |
< |
continue; |
| 148 |
< |
} |
| 281 |
> |
// Let's all check for sanity: |
| 282 |
|
|
| 283 |
< |
nLocal += compStamps[compIndex]->getNAtoms(); |
| 284 |
< |
atomIndex += compStamps[compIndex]->getNAtoms(); |
| 285 |
< |
molIndex++; |
| 286 |
< |
molLocal++; |
| 287 |
< |
} |
| 155 |
< |
|
| 156 |
< |
mpiPlug->myMolEnd = (molIndex - 1); |
| 157 |
< |
mpiPlug->myAtomEnd = (atomIndex - 1); |
| 158 |
< |
mpiPlug->myNlocal = nLocal; |
| 159 |
< |
mpiPlug->myMol = molLocal; |
| 283 |
> |
nmol_local = 0; |
| 284 |
> |
for (i = 0 ; i < parallelData->nMolGlobal; i++ ) { |
| 285 |
> |
if (MolToProcMap[i] == parallelData->myNode) { |
| 286 |
> |
nmol_local++; |
| 287 |
> |
} |
| 288 |
|
} |
| 289 |
|
|
| 290 |
+ |
natoms_local = 0; |
| 291 |
+ |
for (i = 0; i < parallelData->nAtomsGlobal; i++) { |
| 292 |
+ |
if (AtomToProcMap[i] == parallelData->myNode) { |
| 293 |
+ |
natoms_local++; |
| 294 |
+ |
} |
| 295 |
+ |
} |
| 296 |
|
|
| 297 |
< |
MPI_Allreduce( &nLocal, &testSum, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD ); |
| 298 |
< |
|
| 299 |
< |
if( mpiPlug->myNode == 0 ){ |
| 300 |
< |
if( testSum != entryPlug->n_atoms ){ |
| 167 |
< |
sprintf( painCave.errMsg, |
| 168 |
< |
"The summ of all nLocals, %d, did not equal the total number of atoms, %d.\n", |
| 169 |
< |
testSum, entryPlug->n_atoms ); |
| 170 |
< |
painCave.isFatal = 1; |
| 171 |
< |
simError(); |
| 297 |
> |
ngroups_local = 0; |
| 298 |
> |
for (i = 0; i < parallelData->nGroupsGlobal; i++) { |
| 299 |
> |
if (GroupToProcMap[i] == parallelData->myNode) { |
| 300 |
> |
ngroups_local++; |
| 301 |
|
} |
| 302 |
|
} |
| 303 |
|
|
| 304 |
+ |
MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM, |
| 305 |
+ |
MPI_COMM_WORLD); |
| 306 |
+ |
|
| 307 |
+ |
MPI_Allreduce(&natoms_local,&natoms_global,1,MPI_INT, |
| 308 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
| 309 |
+ |
|
| 310 |
+ |
MPI_Allreduce(&ngroups_local,&ngroups_global,1,MPI_INT, |
| 311 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
| 312 |
+ |
|
| 313 |
+ |
if( nmol_global != entryPlug->n_mol ){ |
| 314 |
+ |
sprintf( painCave.errMsg, |
| 315 |
+ |
"The sum of all nmol_local, %d, did not equal the " |
| 316 |
+ |
"total number of molecules, %d.\n", |
| 317 |
+ |
nmol_global, entryPlug->n_mol ); |
| 318 |
+ |
painCave.isFatal = 1; |
| 319 |
+ |
simError(); |
| 320 |
+ |
} |
| 321 |
+ |
|
| 322 |
+ |
if( natoms_global != entryPlug->n_atoms ){ |
| 323 |
+ |
sprintf( painCave.errMsg, |
| 324 |
+ |
"The sum of all natoms_local, %d, did not equal the " |
| 325 |
+ |
"total number of atoms, %d.\n", |
| 326 |
+ |
natoms_global, entryPlug->n_atoms ); |
| 327 |
+ |
painCave.isFatal = 1; |
| 328 |
+ |
simError(); |
| 329 |
+ |
} |
| 330 |
+ |
|
| 331 |
+ |
if( ngroups_global != entryPlug->ngroup ){ |
| 332 |
+ |
sprintf( painCave.errMsg, |
| 333 |
+ |
"The sum of all ngroups_local, %d, did not equal the " |
| 334 |
+ |
"total number of cutoffGroups, %d.\n", |
| 335 |
+ |
ngroups_global, entryPlug->ngroup ); |
| 336 |
+ |
painCave.isFatal = 1; |
| 337 |
+ |
simError(); |
| 338 |
+ |
} |
| 339 |
+ |
|
| 340 |
|
sprintf( checkPointMsg, |
| 341 |
|
"Successfully divided the molecules among the processors.\n" ); |
| 342 |
|
MPIcheckPoint(); |
| 343 |
|
|
| 344 |
< |
// lets create the identity array |
| 344 |
> |
parallelData->nMolLocal = nmol_local; |
| 345 |
> |
parallelData->nAtomsLocal = natoms_local; |
| 346 |
> |
parallelData->nGroupsLocal = ngroups_local; |
| 347 |
|
|
| 348 |
< |
globalIndex = new int[mpiPlug->myNlocal]; |
| 349 |
< |
index = mpiPlug->myAtomStart; |
| 350 |
< |
for( i=0; i<mpiPlug->myNlocal; i++){ |
| 351 |
< |
globalIndex[i] = index; |
| 352 |
< |
index++; |
| 348 |
> |
globalAtomIndex.resize(parallelData->nAtomsLocal); |
| 349 |
> |
globalToLocalAtom.resize(parallelData->nAtomsGlobal); |
| 350 |
> |
local_index = 0; |
| 351 |
> |
for (i = 0; i < parallelData->nAtomsGlobal; i++) { |
| 352 |
> |
if (AtomToProcMap[i] == parallelData->myNode) { |
| 353 |
> |
globalAtomIndex[local_index] = i; |
| 354 |
> |
|
| 355 |
> |
globalToLocalAtom[i] = local_index; |
| 356 |
> |
local_index++; |
| 357 |
> |
|
| 358 |
> |
} |
| 359 |
> |
else |
| 360 |
> |
globalToLocalAtom[i] = -1; |
| 361 |
|
} |
| 362 |
|
|
| 363 |
< |
return globalIndex; |
| 363 |
> |
globalGroupIndex.resize(parallelData->nGroupsLocal); |
| 364 |
> |
globalToLocalGroup.resize(parallelData->nGroupsGlobal); |
| 365 |
> |
local_index = 0; |
| 366 |
> |
for (i = 0; i < parallelData->nGroupsGlobal; i++) { |
| 367 |
> |
if (GroupToProcMap[i] == parallelData->myNode) { |
| 368 |
> |
globalGroupIndex[local_index] = i; |
| 369 |
> |
|
| 370 |
> |
globalToLocalGroup[i] = local_index; |
| 371 |
> |
local_index++; |
| 372 |
> |
|
| 373 |
> |
} |
| 374 |
> |
else |
| 375 |
> |
globalToLocalGroup[i] = -1; |
| 376 |
> |
} |
| 377 |
> |
|
| 378 |
> |
globalMolIndex.resize(parallelData->nMolLocal); |
| 379 |
> |
globalToLocalMol.resize(parallelData->nMolGlobal); |
| 380 |
> |
local_index = 0; |
| 381 |
> |
for (i = 0; i < parallelData->nMolGlobal; i++) { |
| 382 |
> |
if (MolToProcMap[i] == parallelData->myNode) { |
| 383 |
> |
globalMolIndex[local_index] = i; |
| 384 |
> |
globalToLocalMol[i] = local_index; |
| 385 |
> |
local_index++; |
| 386 |
> |
} |
| 387 |
> |
else |
| 388 |
> |
globalToLocalMol[i] = -1; |
| 389 |
> |
} |
| 390 |
> |
|
| 391 |
|
} |
| 392 |
|
|
| 393 |
|
|
| 394 |
|
void mpiSimulation::mpiRefresh( void ){ |
| 395 |
|
|
| 396 |
|
int isError, i; |
| 397 |
< |
int *globalIndex = new int[mpiPlug->myNlocal]; |
| 397 |
> |
int *globalAtomIndex = new int[parallelData->nAtomsLocal]; |
| 398 |
|
|
| 399 |
< |
for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex(); |
| 399 |
> |
// Fortran indexing needs to be increased by 1 in order to get the 2 languages to |
| 400 |
> |
// not barf |
| 401 |
|
|
| 402 |
+ |
for(i=0; i<parallelData->nAtomsLocal; i++) globalAtomIndex[i] = entryPlug->atoms[i]->getGlobalIndex()+1; |
| 403 |
|
|
| 404 |
|
isError = 0; |
| 405 |
< |
setFsimParallel( mpiPlug, &(entryPlug->n_atoms), globalIndex, &isError ); |
| 405 |
> |
setFsimParallel( parallelData, &(entryPlug->n_atoms), globalAtomIndex, &isError ); |
| 406 |
|
if( isError ){ |
| 407 |
|
|
| 408 |
|
sprintf( painCave.errMsg, |
| 411 |
|
simError(); |
| 412 |
|
} |
| 413 |
|
|
| 414 |
< |
delete[] globalIndex; |
| 414 |
> |
delete[] globalAtomIndex; |
| 415 |
|
|
| 416 |
+ |
|
| 417 |
|
sprintf( checkPointMsg, |
| 418 |
|
" mpiRefresh successful.\n" ); |
| 419 |
|
MPIcheckPoint(); |