| 1 | 
  | 
#ifdef IS_MPI | 
| 2 | 
< | 
 | 
| 2 | 
> | 
#include <iostream> | 
| 3 | 
  | 
#include <cstdlib> | 
| 4 | 
  | 
#include <cstring> | 
| 5 | 
  | 
#include <cmath> | 
| 25 | 
  | 
 | 
| 26 | 
  | 
  MolToProcMap = new int[entryPlug->n_mol]; | 
| 27 | 
  | 
  MolComponentType = new int[entryPlug->n_mol]; | 
| 28 | 
– | 
 | 
| 28 | 
  | 
  AtomToProcMap = new int[entryPlug->n_atoms]; | 
| 29 | 
  | 
 | 
| 30 | 
  | 
  mpiSim = this; | 
| 34 | 
  | 
 | 
| 35 | 
  | 
mpiSimulation::~mpiSimulation(){ | 
| 36 | 
  | 
   | 
| 37 | 
+ | 
  delete[] MolToProcMap; | 
| 38 | 
+ | 
  delete[] MolComponentType; | 
| 39 | 
+ | 
  delete[] AtomToProcMap; | 
| 40 | 
+ | 
 | 
| 41 | 
  | 
  delete mpiPlug; | 
| 42 | 
  | 
  // perhaps we should let fortran know the party is over. | 
| 43 | 
  | 
   | 
| 133 | 
  | 
        // How many atoms does this processor have? | 
| 134 | 
  | 
         | 
| 135 | 
  | 
        old_atoms = AtomsPerProc[which_proc]; | 
| 136 | 
+ | 
        add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); | 
| 137 | 
+ | 
        new_atoms = old_atoms + add_atoms; | 
| 138 | 
  | 
 | 
| 139 | 
  | 
        // If the processor already had too many atoms, just skip this | 
| 140 | 
  | 
        // processor and try again. | 
| 141 | 
  | 
 | 
| 137 | 
– | 
        if (old_atoms >= nTarget) continue; | 
| 138 | 
– | 
 | 
| 139 | 
– | 
        add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); | 
| 140 | 
– | 
        new_atoms = old_atoms + add_atoms; | 
| 141 | 
– | 
     | 
| 142 | 
– | 
        // If we can add this molecule to this processor without sending | 
| 143 | 
– | 
        // it above nTarget, then go ahead and do it: | 
| 144 | 
– | 
     | 
| 145 | 
– | 
        if (new_atoms <= nTarget) { | 
| 146 | 
– | 
          MolToProcMap[i] = which_proc; | 
| 147 | 
– | 
          AtomsPerProc[which_proc] += add_atoms; | 
| 148 | 
– | 
          for (j = 0 ; j < add_atoms; j++ ) { | 
| 149 | 
– | 
            atomIndex++; | 
| 150 | 
– | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 151 | 
– | 
          } | 
| 152 | 
– | 
          done = 1; | 
| 153 | 
– | 
          continue; | 
| 154 | 
– | 
        } | 
| 155 | 
– | 
 | 
| 142 | 
  | 
        // If we've been through this loop too many times, we need | 
| 143 | 
  | 
        // to just give up and assign the molecule to this processor | 
| 144 | 
  | 
        // and be done with it.  | 
| 155 | 
  | 
          MolToProcMap[i] = which_proc; | 
| 156 | 
  | 
          AtomsPerProc[which_proc] += add_atoms; | 
| 157 | 
  | 
          for (j = 0 ; j < add_atoms; j++ ) { | 
| 158 | 
< | 
            atomIndex++; | 
| 159 | 
< | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 158 | 
> | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 159 | 
> | 
            atomIndex++; | 
| 160 | 
  | 
          } | 
| 161 | 
  | 
          done = 1; | 
| 162 | 
  | 
          continue; | 
| 163 | 
  | 
        } | 
| 164 | 
  | 
 | 
| 165 | 
+ | 
        if (old_atoms >= nTarget) continue; | 
| 166 | 
+ | 
     | 
| 167 | 
+ | 
        // If we can add this molecule to this processor without sending | 
| 168 | 
+ | 
        // it above nTarget, then go ahead and do it: | 
| 169 | 
+ | 
     | 
| 170 | 
+ | 
        if (new_atoms <= nTarget) { | 
| 171 | 
+ | 
          MolToProcMap[i] = which_proc; | 
| 172 | 
+ | 
          AtomsPerProc[which_proc] += add_atoms; | 
| 173 | 
+ | 
          for (j = 0 ; j < add_atoms; j++ ) { | 
| 174 | 
+ | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 175 | 
+ | 
            atomIndex++; | 
| 176 | 
+ | 
          } | 
| 177 | 
+ | 
          done = 1; | 
| 178 | 
+ | 
          continue; | 
| 179 | 
+ | 
        } | 
| 180 | 
+ | 
 | 
| 181 | 
+ | 
 | 
| 182 | 
  | 
        // The only situation left is where old_atoms < nTarget, but | 
| 183 | 
  | 
        // new_atoms > nTarget.   We want to accept this with some | 
| 184 | 
  | 
        // probability that dies off the farther we are from nTarget | 
| 194 | 
  | 
          MolToProcMap[i] = which_proc; | 
| 195 | 
  | 
          AtomsPerProc[which_proc] += add_atoms; | 
| 196 | 
  | 
          for (j = 0 ; j < add_atoms; j++ ) { | 
| 197 | 
< | 
            atomIndex++; | 
| 198 | 
< | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 199 | 
< | 
          } | 
| 197 | 
> | 
            AtomToProcMap[atomIndex] = which_proc; | 
| 198 | 
> | 
            atomIndex++; | 
| 199 | 
> | 
           } | 
| 200 | 
  | 
          done = 1; | 
| 201 | 
  | 
          continue; | 
| 202 | 
  | 
        } else { | 
| 208 | 
  | 
 | 
| 209 | 
  | 
    // Spray out this nonsense to all other processors: | 
| 210 | 
  | 
 | 
| 211 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal,  | 
| 211 | 
> | 
    MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal,  | 
| 212 | 
  | 
                          MPI_INT, 0); | 
| 213 | 
  | 
 | 
| 214 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal,  | 
| 214 | 
> | 
    MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal,  | 
| 215 | 
  | 
                          MPI_INT, 0); | 
| 216 | 
  | 
 | 
| 217 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal,  | 
| 217 | 
> | 
    MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal,  | 
| 218 | 
  | 
                          MPI_INT, 0); | 
| 219 | 
  | 
 | 
| 220 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors, | 
| 220 | 
> | 
    MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, | 
| 221 | 
  | 
                          MPI_INT, 0);     | 
| 222 | 
  | 
  } else { | 
| 223 | 
  | 
 | 
| 224 | 
  | 
    // Listen to your marching orders from processor 0: | 
| 225 | 
  | 
     | 
| 226 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal,  | 
| 226 | 
> | 
    MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal,  | 
| 227 | 
  | 
                          MPI_INT, 0); | 
| 228 | 
  | 
     | 
| 229 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal,  | 
| 229 | 
> | 
    MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal,  | 
| 230 | 
  | 
                          MPI_INT, 0); | 
| 231 | 
  | 
 | 
| 232 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal,  | 
| 232 | 
> | 
    MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal,  | 
| 233 | 
  | 
                          MPI_INT, 0); | 
| 234 | 
  | 
     | 
| 235 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors, | 
| 235 | 
> | 
    MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, | 
| 236 | 
  | 
                          MPI_INT, 0); | 
| 237 | 
+ | 
 | 
| 238 | 
+ | 
 | 
| 239 | 
  | 
  } | 
| 240 | 
  | 
 | 
| 241 | 
  | 
 | 
| 255 | 
  | 
    } | 
| 256 | 
  | 
  } | 
| 257 | 
  | 
 | 
| 258 | 
+ | 
  std::cerr << "proc = " << mpiPlug->myNode << " atoms = " << natoms_local << "\n"; | 
| 259 | 
+ | 
 | 
| 260 | 
  | 
  MPI::COMM_WORLD.Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM); | 
| 261 | 
  | 
  MPI::COMM_WORLD.Allreduce(&natoms_local,&natoms_global,1,MPI_INT,MPI_SUM); | 
| 262 | 
  | 
   | 
| 289 | 
  | 
  local_index = 0; | 
| 290 | 
  | 
  for (i = 0; i < mpiPlug->nAtomsGlobal; i++) { | 
| 291 | 
  | 
    if (AtomToProcMap[i] == mpiPlug->myNode) { | 
| 285 | 
– | 
      local_index++; | 
| 292 | 
  | 
      globalIndex[local_index] = i; | 
| 293 | 
+ | 
      local_index++; | 
| 294 | 
  | 
    } | 
| 295 | 
  | 
  } | 
| 296 | 
< | 
  | 
| 296 | 
> | 
   | 
| 297 | 
  | 
  return globalIndex; | 
| 298 | 
  | 
} | 
| 299 | 
  | 
 |