1 |
|
#ifdef IS_MPI |
2 |
|
#include <iostream> |
3 |
< |
#include <cstdlib> |
4 |
< |
#include <cstring> |
5 |
< |
#include <cmath> |
3 |
> |
#include <stdlib.h> |
4 |
> |
#include <string.h> |
5 |
> |
#include <math.h> |
6 |
|
#include <mpi.h> |
7 |
– |
#include <mpi++.h> |
7 |
|
|
8 |
|
#include "mpiSimulation.hpp" |
9 |
|
#include "simError.h" |
10 |
|
#include "fortranWrappers.hpp" |
11 |
|
#include "randomSPRNG.hpp" |
12 |
|
|
14 |
– |
#define BASE_SEED 123456789 |
15 |
– |
|
13 |
|
mpiSimulation* mpiSim; |
14 |
|
|
15 |
|
mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) |
17 |
|
entryPlug = the_entryPlug; |
18 |
|
mpiPlug = new mpiSimData; |
19 |
|
|
20 |
< |
mpiPlug->numberProcessors = MPI::COMM_WORLD.Get_size(); |
20 |
> |
MPI_Comm_size(MPI_COMM_WORLD, &(mpiPlug->nProcessors) ); |
21 |
|
mpiPlug->myNode = worldRank; |
22 |
|
|
23 |
|
MolToProcMap = new int[entryPlug->n_mol]; |
40 |
|
|
41 |
|
} |
42 |
|
|
43 |
< |
int* mpiSimulation::divideLabor( void ){ |
43 |
> |
void mpiSimulation::divideLabor( ){ |
44 |
|
|
48 |
– |
int* globalIndex; |
49 |
– |
|
45 |
|
int nComponents; |
46 |
|
MoleculeStamp** compStamps; |
47 |
|
randomSPRNG *myRandom; |
55 |
|
int old_atoms, add_atoms, new_atoms; |
56 |
|
|
57 |
|
int nTarget; |
58 |
< |
int molIndex, atomIndex, compIndex, compStart; |
58 |
> |
int molIndex, atomIndex; |
59 |
|
int done; |
65 |
– |
int nLocal, molLocal; |
60 |
|
int i, j, loops, which_proc, nmol_local, natoms_local; |
61 |
|
int nmol_global, natoms_global; |
62 |
< |
int local_index, index; |
63 |
< |
int smallDiff, bigDiff; |
70 |
< |
int baseSeed = BASE_SEED; |
62 |
> |
int local_index; |
63 |
> |
int baseSeed = entryPlug->getSeed(); |
64 |
|
|
72 |
– |
int testSum; |
73 |
– |
|
65 |
|
nComponents = entryPlug->nComponents; |
66 |
|
compStamps = entryPlug->compStamps; |
67 |
|
componentsNmol = entryPlug->componentsNmol; |
68 |
< |
AtomsPerProc = new int[mpiPlug->numberProcessors]; |
68 |
> |
AtomsPerProc = new int[mpiPlug->nProcessors]; |
69 |
|
|
70 |
|
mpiPlug->nAtomsGlobal = entryPlug->n_atoms; |
71 |
|
mpiPlug->nBondsGlobal = entryPlug->n_bonds; |
73 |
|
mpiPlug->nTorsionsGlobal = entryPlug->n_torsions; |
74 |
|
mpiPlug->nSRIGlobal = entryPlug->n_SRI; |
75 |
|
mpiPlug->nMolGlobal = entryPlug->n_mol; |
76 |
+ |
mpiPlug->nGroupsGlobal = entryPlug->ngroup; |
77 |
|
|
78 |
|
myRandom = new randomSPRNG( baseSeed ); |
79 |
|
|
80 |
< |
a = (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; |
80 |
> |
a = 3.0 * (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; |
81 |
|
|
82 |
|
// Initialize things that we'll send out later: |
83 |
< |
for (i = 0; i < mpiPlug->numberProcessors; i++ ) { |
83 |
> |
for (i = 0; i < mpiPlug->nProcessors; i++ ) { |
84 |
|
AtomsPerProc[i] = 0; |
85 |
|
} |
86 |
|
for (i = 0; i < mpiPlug->nMolGlobal; i++ ) { |
95 |
|
|
96 |
|
if (mpiPlug->myNode == 0) { |
97 |
|
numerator = (double) entryPlug->n_atoms; |
98 |
< |
denominator = (double) mpiPlug->numberProcessors; |
98 |
> |
denominator = (double) mpiPlug->nProcessors; |
99 |
|
precast = numerator / denominator; |
100 |
|
nTarget = (int)( precast + 0.5 ); |
101 |
|
|
120 |
|
|
121 |
|
// Pick a processor at random |
122 |
|
|
123 |
< |
which_proc = (int) (myRandom->getRandom() * mpiPlug->numberProcessors); |
123 |
> |
which_proc = (int) (myRandom->getRandom() * mpiPlug->nProcessors); |
124 |
|
|
125 |
|
// How many atoms does this processor have? |
126 |
|
|
128 |
|
add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); |
129 |
|
new_atoms = old_atoms + add_atoms; |
130 |
|
|
139 |
– |
// If the processor already had too many atoms, just skip this |
140 |
– |
// processor and try again. |
141 |
– |
|
131 |
|
// If we've been through this loop too many times, we need |
132 |
|
// to just give up and assign the molecule to this processor |
133 |
|
// and be done with it. |
150 |
|
done = 1; |
151 |
|
continue; |
152 |
|
} |
164 |
– |
|
165 |
– |
if (old_atoms >= nTarget) continue; |
153 |
|
|
154 |
|
// If we can add this molecule to this processor without sending |
155 |
|
// it above nTarget, then go ahead and do it: |
166 |
|
} |
167 |
|
|
168 |
|
|
169 |
< |
// The only situation left is where old_atoms < nTarget, but |
170 |
< |
// new_atoms > nTarget. We want to accept this with some |
171 |
< |
// probability that dies off the farther we are from nTarget |
169 |
> |
// The only situation left is when new_atoms > nTarget. We |
170 |
> |
// want to accept this with some probability that dies off the |
171 |
> |
// farther we are from nTarget |
172 |
|
|
173 |
|
// roughly: x = new_atoms - nTarget |
174 |
|
// Pacc(x) = exp(- a * x) |
175 |
< |
// where a = 1 / (average atoms per molecule) |
175 |
> |
// where a = penalty / (average atoms per molecule) |
176 |
|
|
177 |
|
x = (double) (new_atoms - nTarget); |
178 |
|
y = myRandom->getRandom(); |
179 |
< |
|
180 |
< |
if (exp(- a * x) > y) { |
179 |
> |
|
180 |
> |
if (y < exp(- a * x)) { |
181 |
|
MolToProcMap[i] = which_proc; |
182 |
|
AtomsPerProc[which_proc] += add_atoms; |
183 |
|
for (j = 0 ; j < add_atoms; j++ ) { |
195 |
|
|
196 |
|
// Spray out this nonsense to all other processors: |
197 |
|
|
198 |
< |
MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
199 |
< |
MPI_INT, 0); |
198 |
> |
MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
199 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
200 |
|
|
201 |
< |
MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
202 |
< |
MPI_INT, 0); |
201 |
> |
MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
202 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
203 |
|
|
204 |
< |
MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal, |
205 |
< |
MPI_INT, 0); |
204 |
> |
MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
205 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
206 |
|
|
207 |
< |
MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
208 |
< |
MPI_INT, 0); |
207 |
> |
MPI_Bcast(AtomsPerProc, mpiPlug->nProcessors, |
208 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
209 |
|
} else { |
210 |
|
|
211 |
|
// Listen to your marching orders from processor 0: |
212 |
|
|
213 |
< |
MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
214 |
< |
MPI_INT, 0); |
213 |
> |
MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
214 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
215 |
|
|
216 |
< |
MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
217 |
< |
MPI_INT, 0); |
216 |
> |
MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
217 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
218 |
|
|
219 |
< |
MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal, |
220 |
< |
MPI_INT, 0); |
219 |
> |
MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
220 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
221 |
|
|
222 |
< |
MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
223 |
< |
MPI_INT, 0); |
222 |
> |
MPI_Bcast(AtomsPerProc, mpiPlug->nProcessors, |
223 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
224 |
|
|
225 |
|
|
226 |
|
} |
242 |
|
} |
243 |
|
} |
244 |
|
|
245 |
< |
std::cerr << "proc = " << mpiPlug->myNode << " atoms = " << natoms_local << "\n"; |
246 |
< |
|
247 |
< |
MPI::COMM_WORLD.Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM); |
248 |
< |
MPI::COMM_WORLD.Allreduce(&natoms_local,&natoms_global,1,MPI_INT,MPI_SUM); |
245 |
> |
MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM, |
246 |
> |
MPI_COMM_WORLD); |
247 |
> |
MPI_Allreduce(&natoms_local,&natoms_global,1,MPI_INT, |
248 |
> |
MPI_SUM, MPI_COMM_WORLD); |
249 |
|
|
250 |
|
if( nmol_global != entryPlug->n_mol ){ |
251 |
|
sprintf( painCave.errMsg, |
269 |
|
"Successfully divided the molecules among the processors.\n" ); |
270 |
|
MPIcheckPoint(); |
271 |
|
|
272 |
< |
mpiPlug->myNMol = nmol_local; |
273 |
< |
mpiPlug->myNlocal = natoms_local; |
272 |
> |
mpiPlug->nMolLocal = nmol_local; |
273 |
> |
mpiPlug->nAtomsLocal = natoms_local; |
274 |
|
|
275 |
< |
globalIndex = new int[mpiPlug->myNlocal]; |
275 |
> |
globalAtomIndex.resize(mpiPlug->nAtomsLocal); |
276 |
> |
globalToLocalAtom.resize(mpiPlug->nAtomsGlobal); |
277 |
|
local_index = 0; |
278 |
|
for (i = 0; i < mpiPlug->nAtomsGlobal; i++) { |
279 |
|
if (AtomToProcMap[i] == mpiPlug->myNode) { |
280 |
< |
globalIndex[local_index] = i; |
280 |
> |
globalAtomIndex[local_index] = i; |
281 |
> |
|
282 |
> |
globalToLocalAtom[i] = local_index; |
283 |
|
local_index++; |
284 |
+ |
|
285 |
|
} |
286 |
+ |
else |
287 |
+ |
globalToLocalAtom[i] = -1; |
288 |
|
} |
289 |
+ |
|
290 |
+ |
globalMolIndex.resize(mpiPlug->nMolLocal); |
291 |
+ |
globalToLocalMol.resize(mpiPlug->nMolGlobal); |
292 |
|
|
293 |
< |
return globalIndex; |
293 |
> |
local_index = 0; |
294 |
> |
for (i = 0; i < mpiPlug->nMolGlobal; i++) { |
295 |
> |
if (MolToProcMap[i] == mpiPlug->myNode) { |
296 |
> |
globalMolIndex[local_index] = i; |
297 |
> |
globalToLocalMol[i] = local_index; |
298 |
> |
local_index++; |
299 |
> |
} |
300 |
> |
else |
301 |
> |
globalToLocalMol[i] = -1; |
302 |
> |
} |
303 |
> |
|
304 |
|
} |
305 |
|
|
306 |
|
|
307 |
|
void mpiSimulation::mpiRefresh( void ){ |
308 |
|
|
309 |
|
int isError, i; |
310 |
< |
int *globalIndex = new int[mpiPlug->myNlocal]; |
310 |
> |
int *globalIndex = new int[mpiPlug->nAtomsLocal]; |
311 |
|
|
312 |
< |
for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex(); |
312 |
> |
// Fortran indexing needs to be increased by 1 in order to get the 2 languages to |
313 |
> |
// not barf |
314 |
|
|
315 |
+ |
for(i=0; i<mpiPlug->nAtomsLocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex()+1; |
316 |
+ |
|
317 |
|
|
318 |
|
isError = 0; |
319 |
|
setFsimParallel( mpiPlug, &(entryPlug->n_atoms), globalIndex, &isError ); |