1 |
|
#ifdef IS_MPI |
2 |
< |
|
3 |
< |
#include <cstdlib> |
4 |
< |
#include <cstring> |
2 |
> |
#include <iostream> |
3 |
> |
#include <stdlib.h> |
4 |
> |
#include <string.h> |
5 |
> |
#include <math.h> |
6 |
|
#include <mpi.h> |
6 |
– |
#include <mpi++.h> |
7 |
|
|
8 |
|
#include "mpiSimulation.hpp" |
9 |
|
#include "simError.h" |
10 |
|
#include "fortranWrappers.hpp" |
11 |
|
#include "randomSPRNG.hpp" |
12 |
|
|
13 |
– |
|
13 |
|
mpiSimulation* mpiSim; |
14 |
|
|
15 |
|
mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) |
17 |
|
entryPlug = the_entryPlug; |
18 |
|
mpiPlug = new mpiSimData; |
19 |
|
|
20 |
< |
mpiPlug->numberProcessors = MPI::COMM_WORLD.Get_size(); |
20 |
> |
MPI_Comm_size(MPI_COMM_WORLD, &(mpiPlug->numberProcessors) ); |
21 |
|
mpiPlug->myNode = worldRank; |
22 |
|
|
23 |
|
MolToProcMap = new int[entryPlug->n_mol]; |
24 |
|
MolComponentType = new int[entryPlug->n_mol]; |
26 |
– |
|
25 |
|
AtomToProcMap = new int[entryPlug->n_atoms]; |
26 |
|
|
27 |
|
mpiSim = this; |
31 |
|
|
32 |
|
mpiSimulation::~mpiSimulation(){ |
33 |
|
|
34 |
+ |
delete[] MolToProcMap; |
35 |
+ |
delete[] MolComponentType; |
36 |
+ |
delete[] AtomToProcMap; |
37 |
+ |
|
38 |
|
delete mpiPlug; |
39 |
|
// perhaps we should let fortran know the party is over. |
40 |
|
|
41 |
|
} |
42 |
|
|
43 |
< |
int* mpiSimulation::divideLabor( void ){ |
43 |
> |
void mpiSimulation::divideLabor( ){ |
44 |
|
|
43 |
– |
int* globalIndex; |
44 |
– |
|
45 |
|
int nComponents; |
46 |
|
MoleculeStamp** compStamps; |
47 |
< |
randomSPRNG myRandom; |
47 |
> |
randomSPRNG *myRandom; |
48 |
|
int* componentsNmol; |
49 |
|
int* AtomsPerProc; |
50 |
|
|
55 |
|
int old_atoms, add_atoms, new_atoms; |
56 |
|
|
57 |
|
int nTarget; |
58 |
< |
int molIndex, atomIndex, compIndex, compStart; |
58 |
> |
int molIndex, atomIndex; |
59 |
|
int done; |
60 |
< |
int nLocal, molLocal; |
61 |
< |
int i, index; |
62 |
< |
int smallDiff, bigDiff; |
60 |
> |
int i, j, loops, which_proc, nmol_local, natoms_local; |
61 |
> |
int nmol_global, natoms_global; |
62 |
> |
int local_index; |
63 |
> |
int baseSeed = entryPlug->getSeed(); |
64 |
|
|
64 |
– |
int testSum; |
65 |
– |
|
65 |
|
nComponents = entryPlug->nComponents; |
66 |
|
compStamps = entryPlug->compStamps; |
67 |
|
componentsNmol = entryPlug->componentsNmol; |
74 |
|
mpiPlug->nSRIGlobal = entryPlug->n_SRI; |
75 |
|
mpiPlug->nMolGlobal = entryPlug->n_mol; |
76 |
|
|
77 |
< |
myRandom = new randomSPRNG(); |
77 |
> |
myRandom = new randomSPRNG( baseSeed ); |
78 |
|
|
79 |
< |
a = (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; |
79 |
> |
a = 3.0 * (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; |
80 |
|
|
81 |
|
// Initialize things that we'll send out later: |
82 |
|
for (i = 0; i < mpiPlug->numberProcessors; i++ ) { |
119 |
|
|
120 |
|
// Pick a processor at random |
121 |
|
|
122 |
< |
which_proc = (int) (myRandom.getRandom() * mpiPlug->numberProcessors); |
122 |
> |
which_proc = (int) (myRandom->getRandom() * mpiPlug->numberProcessors); |
123 |
|
|
124 |
|
// How many atoms does this processor have? |
125 |
|
|
126 |
|
old_atoms = AtomsPerProc[which_proc]; |
127 |
< |
|
129 |
< |
// If the processor already had too many atoms, just skip this |
130 |
< |
// processor and try again. |
131 |
< |
|
132 |
< |
if (old_atoms >= nTarget) continue; |
133 |
< |
|
134 |
< |
add_atoms = compStamps[MolComponentType[i]]->getNatoms(); |
127 |
> |
add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); |
128 |
|
new_atoms = old_atoms + add_atoms; |
136 |
– |
|
137 |
– |
// If we can add this molecule to this processor without sending |
138 |
– |
// it above nTarget, then go ahead and do it: |
139 |
– |
|
140 |
– |
if (new_atoms <= nTarget) { |
141 |
– |
MolToProcMap[i] = which_proc; |
142 |
– |
AtomsPerProc[which_proc] += add_atoms; |
143 |
– |
for (j = 0 ; j < add_atoms; j++ ) { |
144 |
– |
atomIndex++; |
145 |
– |
AtomToProcMap[atomIndex] = which_proc; |
146 |
– |
} |
147 |
– |
done = 1; |
148 |
– |
continue; |
149 |
– |
} |
129 |
|
|
130 |
|
// If we've been through this loop too many times, we need |
131 |
|
// to just give up and assign the molecule to this processor |
143 |
|
MolToProcMap[i] = which_proc; |
144 |
|
AtomsPerProc[which_proc] += add_atoms; |
145 |
|
for (j = 0 ; j < add_atoms; j++ ) { |
146 |
< |
atomIndex++; |
147 |
< |
AtomToProcMap[atomIndex] = which_proc; |
146 |
> |
AtomToProcMap[atomIndex] = which_proc; |
147 |
> |
atomIndex++; |
148 |
|
} |
149 |
|
done = 1; |
150 |
|
continue; |
151 |
|
} |
152 |
+ |
|
153 |
+ |
// If we can add this molecule to this processor without sending |
154 |
+ |
// it above nTarget, then go ahead and do it: |
155 |
+ |
|
156 |
+ |
if (new_atoms <= nTarget) { |
157 |
+ |
MolToProcMap[i] = which_proc; |
158 |
+ |
AtomsPerProc[which_proc] += add_atoms; |
159 |
+ |
for (j = 0 ; j < add_atoms; j++ ) { |
160 |
+ |
AtomToProcMap[atomIndex] = which_proc; |
161 |
+ |
atomIndex++; |
162 |
+ |
} |
163 |
+ |
done = 1; |
164 |
+ |
continue; |
165 |
+ |
} |
166 |
|
|
174 |
– |
// The only situation left is where old_atoms < nTarget, but |
175 |
– |
// new_atoms > nTarget. We want to accept this with some |
176 |
– |
// probability that dies off the farther we are from nTarget |
167 |
|
|
168 |
+ |
// The only situation left is when new_atoms > nTarget. We |
169 |
+ |
// want to accept this with some probability that dies off the |
170 |
+ |
// farther we are from nTarget |
171 |
+ |
|
172 |
|
// roughly: x = new_atoms - nTarget |
173 |
|
// Pacc(x) = exp(- a * x) |
174 |
< |
// where a = 1 / (average atoms per molecule) |
174 |
> |
// where a = penalty / (average atoms per molecule) |
175 |
|
|
176 |
|
x = (double) (new_atoms - nTarget); |
177 |
< |
y = myRandom.getRandom(); |
178 |
< |
|
179 |
< |
if (exp(- a * x) > y) { |
177 |
> |
y = myRandom->getRandom(); |
178 |
> |
|
179 |
> |
if (y < exp(- a * x)) { |
180 |
|
MolToProcMap[i] = which_proc; |
181 |
|
AtomsPerProc[which_proc] += add_atoms; |
182 |
|
for (j = 0 ; j < add_atoms; j++ ) { |
183 |
< |
atomIndex++; |
184 |
< |
AtomToProcMap[atomIndex] = which_proc; |
185 |
< |
} |
183 |
> |
AtomToProcMap[atomIndex] = which_proc; |
184 |
> |
atomIndex++; |
185 |
> |
} |
186 |
|
done = 1; |
187 |
|
continue; |
188 |
|
} else { |
194 |
|
|
195 |
|
// Spray out this nonsense to all other processors: |
196 |
|
|
197 |
< |
MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal, |
198 |
< |
MPI_INT, 0); |
197 |
> |
MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
198 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
199 |
|
|
200 |
< |
MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal, |
201 |
< |
MPI_INT, 0); |
200 |
> |
MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
201 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
202 |
|
|
203 |
< |
MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal, |
204 |
< |
MPI_INT, 0); |
203 |
> |
MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
204 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
205 |
|
|
206 |
< |
MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors, |
207 |
< |
MPI_INT, 0); |
206 |
> |
MPI_Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
207 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
208 |
|
} else { |
209 |
|
|
210 |
|
// Listen to your marching orders from processor 0: |
211 |
|
|
212 |
< |
MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal, |
213 |
< |
MPI_INT, 0); |
212 |
> |
MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
213 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
214 |
|
|
215 |
< |
MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal, |
216 |
< |
MPI_INT, 0); |
215 |
> |
MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
216 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
217 |
|
|
218 |
< |
MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal, |
219 |
< |
MPI_INT, 0); |
218 |
> |
MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
219 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
220 |
|
|
221 |
< |
MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors, |
222 |
< |
MPI_INT, 0); |
221 |
> |
MPI_Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
222 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
223 |
> |
|
224 |
> |
|
225 |
|
} |
226 |
|
|
227 |
|
|
241 |
|
} |
242 |
|
} |
243 |
|
|
244 |
< |
MPI::COMM_WORLD.Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM); |
245 |
< |
MPI::COMM_WORLD.Allreduce(&natoms_local,&natoms_global,1,MPI_INT,MPI_SUM); |
244 |
> |
MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM, |
245 |
> |
MPI_COMM_WORLD); |
246 |
> |
MPI_Allreduce(&natoms_local,&natoms_global,1,MPI_INT, |
247 |
> |
MPI_SUM, MPI_COMM_WORLD); |
248 |
|
|
249 |
|
if( nmol_global != entryPlug->n_mol ){ |
250 |
|
sprintf( painCave.errMsg, |
271 |
|
mpiPlug->myNMol = nmol_local; |
272 |
|
mpiPlug->myNlocal = natoms_local; |
273 |
|
|
274 |
< |
globalIndex = new int[mpiPlug->myNlocal]; |
274 |
> |
globalAtomIndex.resize(mpiPlug->myNlocal); |
275 |
> |
globalToLocalAtom.resize(mpiPlug->nAtomsGlobal); |
276 |
|
local_index = 0; |
277 |
|
for (i = 0; i < mpiPlug->nAtomsGlobal; i++) { |
278 |
|
if (AtomToProcMap[i] == mpiPlug->myNode) { |
279 |
< |
globalIndex[local_index] = |
279 |
> |
globalAtomIndex[local_index] = i; |
280 |
> |
|
281 |
> |
globalToLocalAtom[i] = local_index; |
282 |
> |
local_index++; |
283 |
> |
|
284 |
|
} |
285 |
+ |
else |
286 |
+ |
globalToLocalAtom[i] = -1; |
287 |
|
} |
283 |
– |
|
288 |
|
|
289 |
< |
|
290 |
< |
|
291 |
< |
index = mpiPlug->myAtomStart; |
292 |
< |
// for( i=0; i<mpiPlug->myNlocal; i++){ |
293 |
< |
// globalIndex[i] = index; |
294 |
< |
// index++; |
295 |
< |
// } |
296 |
< |
|
297 |
< |
// return globalIndex; |
289 |
> |
globalMolIndex.resize(mpiPlug->myNMol); |
290 |
> |
globalToLocalMol.resize(mpiPlug->nMolGlobal); |
291 |
> |
|
292 |
> |
local_index = 0; |
293 |
> |
for (i = 0; i < mpiPlug->nMolGlobal; i++) { |
294 |
> |
if (MolToProcMap[i] == mpiPlug->myNode) { |
295 |
> |
globalMolIndex[local_index] = i; |
296 |
> |
globalToLocalMol[i] = local_index; |
297 |
> |
local_index++; |
298 |
> |
} |
299 |
> |
else |
300 |
> |
globalToLocalMol[i] = -1; |
301 |
> |
} |
302 |
> |
|
303 |
|
} |
304 |
|
|
305 |
|
|
308 |
|
int isError, i; |
309 |
|
int *globalIndex = new int[mpiPlug->myNlocal]; |
310 |
|
|
311 |
< |
for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex(); |
311 |
> |
// Fortran indexing needs to be increased by 1 in order to get the 2 languages to |
312 |
> |
// not barf |
313 |
|
|
314 |
+ |
for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex()+1; |
315 |
+ |
|
316 |
|
|
317 |
|
isError = 0; |
318 |
|
setFsimParallel( mpiPlug, &(entryPlug->n_atoms), globalIndex, &isError ); |