17 |
|
entryPlug = the_entryPlug; |
18 |
|
mpiPlug = new mpiSimData; |
19 |
|
|
20 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(mpiPlug->numberProcessors) ); |
20 |
> |
MPI_Comm_size(MPI_COMM_WORLD, &(mpiPlug->nProcessors) ); |
21 |
|
mpiPlug->myNode = worldRank; |
22 |
|
|
23 |
|
MolToProcMap = new int[entryPlug->n_mol]; |
40 |
|
|
41 |
|
} |
42 |
|
|
43 |
< |
int* mpiSimulation::divideLabor( void ){ |
43 |
> |
void mpiSimulation::divideLabor( ){ |
44 |
|
|
45 |
– |
int* globalIndex; |
46 |
– |
|
45 |
|
int nComponents; |
46 |
|
MoleculeStamp** compStamps; |
47 |
|
randomSPRNG *myRandom; |
65 |
|
nComponents = entryPlug->nComponents; |
66 |
|
compStamps = entryPlug->compStamps; |
67 |
|
componentsNmol = entryPlug->componentsNmol; |
68 |
< |
AtomsPerProc = new int[mpiPlug->numberProcessors]; |
68 |
> |
AtomsPerProc = new int[mpiPlug->nProcessors]; |
69 |
|
|
70 |
|
mpiPlug->nAtomsGlobal = entryPlug->n_atoms; |
71 |
|
mpiPlug->nBondsGlobal = entryPlug->n_bonds; |
73 |
|
mpiPlug->nTorsionsGlobal = entryPlug->n_torsions; |
74 |
|
mpiPlug->nSRIGlobal = entryPlug->n_SRI; |
75 |
|
mpiPlug->nMolGlobal = entryPlug->n_mol; |
76 |
+ |
mpiPlug->nGroupsGlobal = entryPlug->ngroup; |
77 |
|
|
79 |
– |
|
78 |
|
myRandom = new randomSPRNG( baseSeed ); |
79 |
|
|
80 |
|
a = 3.0 * (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; |
81 |
|
|
82 |
|
// Initialize things that we'll send out later: |
83 |
< |
for (i = 0; i < mpiPlug->numberProcessors; i++ ) { |
83 |
> |
for (i = 0; i < mpiPlug->nProcessors; i++ ) { |
84 |
|
AtomsPerProc[i] = 0; |
85 |
|
} |
86 |
|
for (i = 0; i < mpiPlug->nMolGlobal; i++ ) { |
95 |
|
|
96 |
|
if (mpiPlug->myNode == 0) { |
97 |
|
numerator = (double) entryPlug->n_atoms; |
98 |
< |
denominator = (double) mpiPlug->numberProcessors; |
98 |
> |
denominator = (double) mpiPlug->nProcessors; |
99 |
|
precast = numerator / denominator; |
100 |
|
nTarget = (int)( precast + 0.5 ); |
101 |
|
|
120 |
|
|
121 |
|
// Pick a processor at random |
122 |
|
|
123 |
< |
which_proc = (int) (myRandom->getRandom() * mpiPlug->numberProcessors); |
123 |
> |
which_proc = (int) (myRandom->getRandom() * mpiPlug->nProcessors); |
124 |
|
|
125 |
|
// How many atoms does this processor have? |
126 |
|
|
204 |
|
MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
205 |
|
MPI_INT, 0, MPI_COMM_WORLD); |
206 |
|
|
207 |
< |
MPI_Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
207 |
> |
MPI_Bcast(AtomsPerProc, mpiPlug->nProcessors, |
208 |
|
MPI_INT, 0, MPI_COMM_WORLD); |
209 |
|
} else { |
210 |
|
|
219 |
|
MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
220 |
|
MPI_INT, 0, MPI_COMM_WORLD); |
221 |
|
|
222 |
< |
MPI_Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
222 |
> |
MPI_Bcast(AtomsPerProc, mpiPlug->nProcessors, |
223 |
|
MPI_INT, 0, MPI_COMM_WORLD); |
224 |
|
|
225 |
|
|
269 |
|
"Successfully divided the molecules among the processors.\n" ); |
270 |
|
MPIcheckPoint(); |
271 |
|
|
272 |
< |
mpiPlug->myNMol = nmol_local; |
273 |
< |
mpiPlug->myNlocal = natoms_local; |
272 |
> |
mpiPlug->nMolLocal = nmol_local; |
273 |
> |
mpiPlug->nAtomsLocal = natoms_local; |
274 |
|
|
275 |
< |
globalIndex = new int[mpiPlug->myNlocal]; |
275 |
> |
globalAtomIndex.resize(mpiPlug->nAtomsLocal); |
276 |
> |
globalToLocalAtom.resize(mpiPlug->nAtomsGlobal); |
277 |
|
local_index = 0; |
278 |
|
for (i = 0; i < mpiPlug->nAtomsGlobal; i++) { |
279 |
|
if (AtomToProcMap[i] == mpiPlug->myNode) { |
280 |
< |
globalIndex[local_index] = i; |
280 |
> |
globalAtomIndex[local_index] = i; |
281 |
> |
|
282 |
> |
globalToLocalAtom[i] = local_index; |
283 |
|
local_index++; |
284 |
+ |
|
285 |
|
} |
286 |
+ |
else |
287 |
+ |
globalToLocalAtom[i] = -1; |
288 |
|
} |
289 |
+ |
|
290 |
+ |
globalMolIndex.resize(mpiPlug->nMolLocal); |
291 |
+ |
globalToLocalMol.resize(mpiPlug->nMolGlobal); |
292 |
|
|
293 |
< |
return globalIndex; |
293 |
> |
local_index = 0; |
294 |
> |
for (i = 0; i < mpiPlug->nMolGlobal; i++) { |
295 |
> |
if (MolToProcMap[i] == mpiPlug->myNode) { |
296 |
> |
globalMolIndex[local_index] = i; |
297 |
> |
globalToLocalMol[i] = local_index; |
298 |
> |
local_index++; |
299 |
> |
} |
300 |
> |
else |
301 |
> |
globalToLocalMol[i] = -1; |
302 |
> |
} |
303 |
> |
|
304 |
|
} |
305 |
|
|
306 |
|
|
307 |
|
void mpiSimulation::mpiRefresh( void ){ |
308 |
|
|
309 |
|
int isError, i; |
310 |
< |
int *globalIndex = new int[mpiPlug->myNlocal]; |
310 |
> |
int *globalIndex = new int[mpiPlug->nAtomsLocal]; |
311 |
|
|
312 |
|
// Fortran indexing needs to be increased by 1 in order to get the 2 languages to |
313 |
|
// not barf |
314 |
|
|
315 |
< |
for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex()+1; |
315 |
> |
for(i=0; i<mpiPlug->nAtomsLocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex()+1; |
316 |
|
|
317 |
|
|
318 |
|
isError = 0; |