| 1 |
|
#ifdef IS_MPI |
| 2 |
< |
|
| 2 |
> |
#include <iostream> |
| 3 |
|
#include <cstdlib> |
| 4 |
|
#include <cstring> |
| 5 |
+ |
#include <cmath> |
| 6 |
|
#include <mpi.h> |
| 7 |
|
#include <mpi++.h> |
| 8 |
|
|
| 11 |
|
#include "fortranWrappers.hpp" |
| 12 |
|
#include "randomSPRNG.hpp" |
| 13 |
|
|
| 14 |
+ |
#define BASE_SEED 123456789 |
| 15 |
|
|
| 16 |
|
mpiSimulation* mpiSim; |
| 17 |
|
|
| 25 |
|
|
| 26 |
|
MolToProcMap = new int[entryPlug->n_mol]; |
| 27 |
|
MolComponentType = new int[entryPlug->n_mol]; |
| 26 |
– |
|
| 28 |
|
AtomToProcMap = new int[entryPlug->n_atoms]; |
| 29 |
|
|
| 30 |
|
mpiSim = this; |
| 34 |
|
|
| 35 |
|
mpiSimulation::~mpiSimulation(){ |
| 36 |
|
|
| 37 |
+ |
delete[] MolToProcMap; |
| 38 |
+ |
delete[] MolComponentType; |
| 39 |
+ |
delete[] AtomToProcMap; |
| 40 |
+ |
|
| 41 |
|
delete mpiPlug; |
| 42 |
|
// perhaps we should let fortran know the party is over. |
| 43 |
|
|
| 49 |
|
|
| 50 |
|
int nComponents; |
| 51 |
|
MoleculeStamp** compStamps; |
| 52 |
< |
randomSPRNG myRandom; |
| 52 |
> |
randomSPRNG *myRandom; |
| 53 |
|
int* componentsNmol; |
| 54 |
|
int* AtomsPerProc; |
| 55 |
|
|
| 63 |
|
int molIndex, atomIndex, compIndex, compStart; |
| 64 |
|
int done; |
| 65 |
|
int nLocal, molLocal; |
| 66 |
< |
int i, index; |
| 66 |
> |
int i, j, loops, which_proc, nmol_local, natoms_local; |
| 67 |
> |
int nmol_global, natoms_global; |
| 68 |
> |
int local_index, index; |
| 69 |
|
int smallDiff, bigDiff; |
| 70 |
+ |
int baseSeed = BASE_SEED; |
| 71 |
|
|
| 72 |
|
int testSum; |
| 73 |
|
|
| 83 |
|
mpiPlug->nSRIGlobal = entryPlug->n_SRI; |
| 84 |
|
mpiPlug->nMolGlobal = entryPlug->n_mol; |
| 85 |
|
|
| 86 |
< |
myRandom = new randomSPRNG(); |
| 86 |
> |
myRandom = new randomSPRNG( baseSeed ); |
| 87 |
|
|
| 88 |
|
a = (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; |
| 89 |
|
|
| 128 |
|
|
| 129 |
|
// Pick a processor at random |
| 130 |
|
|
| 131 |
< |
which_proc = (int) (myRandom.getRandom() * mpiPlug->numberProcessors); |
| 131 |
> |
which_proc = (int) (myRandom->getRandom() * mpiPlug->numberProcessors); |
| 132 |
|
|
| 133 |
|
// How many atoms does this processor have? |
| 134 |
|
|
| 135 |
|
old_atoms = AtomsPerProc[which_proc]; |
| 136 |
+ |
add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); |
| 137 |
+ |
new_atoms = old_atoms + add_atoms; |
| 138 |
|
|
| 139 |
|
// If the processor already had too many atoms, just skip this |
| 140 |
|
// processor and try again. |
| 141 |
|
|
| 132 |
– |
if (old_atoms >= nTarget) continue; |
| 133 |
– |
|
| 134 |
– |
add_atoms = compStamps[MolComponentType[i]]->getNatoms(); |
| 135 |
– |
new_atoms = old_atoms + add_atoms; |
| 136 |
– |
|
| 137 |
– |
// If we can add this molecule to this processor without sending |
| 138 |
– |
// it above nTarget, then go ahead and do it: |
| 139 |
– |
|
| 140 |
– |
if (new_atoms <= nTarget) { |
| 141 |
– |
MolToProcMap[i] = which_proc; |
| 142 |
– |
AtomsPerProc[which_proc] += add_atoms; |
| 143 |
– |
for (j = 0 ; j < add_atoms; j++ ) { |
| 144 |
– |
atomIndex++; |
| 145 |
– |
AtomToProcMap[atomIndex] = which_proc; |
| 146 |
– |
} |
| 147 |
– |
done = 1; |
| 148 |
– |
continue; |
| 149 |
– |
} |
| 150 |
– |
|
| 142 |
|
// If we've been through this loop too many times, we need |
| 143 |
|
// to just give up and assign the molecule to this processor |
| 144 |
|
// and be done with it. |
| 155 |
|
MolToProcMap[i] = which_proc; |
| 156 |
|
AtomsPerProc[which_proc] += add_atoms; |
| 157 |
|
for (j = 0 ; j < add_atoms; j++ ) { |
| 158 |
< |
atomIndex++; |
| 159 |
< |
AtomToProcMap[atomIndex] = which_proc; |
| 158 |
> |
AtomToProcMap[atomIndex] = which_proc; |
| 159 |
> |
atomIndex++; |
| 160 |
|
} |
| 161 |
|
done = 1; |
| 162 |
|
continue; |
| 163 |
|
} |
| 164 |
|
|
| 165 |
+ |
if (old_atoms >= nTarget) continue; |
| 166 |
+ |
|
| 167 |
+ |
// If we can add this molecule to this processor without sending |
| 168 |
+ |
// it above nTarget, then go ahead and do it: |
| 169 |
+ |
|
| 170 |
+ |
if (new_atoms <= nTarget) { |
| 171 |
+ |
MolToProcMap[i] = which_proc; |
| 172 |
+ |
AtomsPerProc[which_proc] += add_atoms; |
| 173 |
+ |
for (j = 0 ; j < add_atoms; j++ ) { |
| 174 |
+ |
AtomToProcMap[atomIndex] = which_proc; |
| 175 |
+ |
atomIndex++; |
| 176 |
+ |
} |
| 177 |
+ |
done = 1; |
| 178 |
+ |
continue; |
| 179 |
+ |
} |
| 180 |
+ |
|
| 181 |
+ |
|
| 182 |
|
// The only situation left is where old_atoms < nTarget, but |
| 183 |
|
// new_atoms > nTarget. We want to accept this with some |
| 184 |
|
// probability that dies off the farther we are from nTarget |
| 188 |
|
// where a = 1 / (average atoms per molecule) |
| 189 |
|
|
| 190 |
|
x = (double) (new_atoms - nTarget); |
| 191 |
< |
y = myRandom.getRandom(); |
| 191 |
> |
y = myRandom->getRandom(); |
| 192 |
|
|
| 193 |
|
if (exp(- a * x) > y) { |
| 194 |
|
MolToProcMap[i] = which_proc; |
| 195 |
|
AtomsPerProc[which_proc] += add_atoms; |
| 196 |
|
for (j = 0 ; j < add_atoms; j++ ) { |
| 197 |
< |
atomIndex++; |
| 198 |
< |
AtomToProcMap[atomIndex] = which_proc; |
| 199 |
< |
} |
| 197 |
> |
AtomToProcMap[atomIndex] = which_proc; |
| 198 |
> |
atomIndex++; |
| 199 |
> |
} |
| 200 |
|
done = 1; |
| 201 |
|
continue; |
| 202 |
|
} else { |
| 208 |
|
|
| 209 |
|
// Spray out this nonsense to all other processors: |
| 210 |
|
|
| 211 |
< |
MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal, |
| 211 |
> |
MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
| 212 |
|
MPI_INT, 0); |
| 213 |
|
|
| 214 |
< |
MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal, |
| 214 |
> |
MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
| 215 |
|
MPI_INT, 0); |
| 216 |
|
|
| 217 |
< |
MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal, |
| 217 |
> |
MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal, |
| 218 |
|
MPI_INT, 0); |
| 219 |
|
|
| 220 |
< |
MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors, |
| 220 |
> |
MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
| 221 |
|
MPI_INT, 0); |
| 222 |
|
} else { |
| 223 |
|
|
| 224 |
|
// Listen to your marching orders from processor 0: |
| 225 |
|
|
| 226 |
< |
MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal, |
| 226 |
> |
MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
| 227 |
|
MPI_INT, 0); |
| 228 |
|
|
| 229 |
< |
MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal, |
| 229 |
> |
MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
| 230 |
|
MPI_INT, 0); |
| 231 |
|
|
| 232 |
< |
MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal, |
| 232 |
> |
MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal, |
| 233 |
|
MPI_INT, 0); |
| 234 |
|
|
| 235 |
< |
MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors, |
| 235 |
> |
MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
| 236 |
|
MPI_INT, 0); |
| 237 |
+ |
|
| 238 |
+ |
|
| 239 |
|
} |
| 240 |
|
|
| 241 |
|
|
| 255 |
|
} |
| 256 |
|
} |
| 257 |
|
|
| 258 |
+ |
std::cerr << "proc = " << mpiPlug->myNode << " atoms = " << natoms_local << "\n"; |
| 259 |
+ |
|
| 260 |
|
MPI::COMM_WORLD.Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM); |
| 261 |
|
MPI::COMM_WORLD.Allreduce(&natoms_local,&natoms_global,1,MPI_INT,MPI_SUM); |
| 262 |
|
|
| 289 |
|
local_index = 0; |
| 290 |
|
for (i = 0; i < mpiPlug->nAtomsGlobal; i++) { |
| 291 |
|
if (AtomToProcMap[i] == mpiPlug->myNode) { |
| 280 |
– |
local_index++; |
| 292 |
|
globalIndex[local_index] = i; |
| 293 |
+ |
local_index++; |
| 294 |
|
} |
| 295 |
|
} |
| 296 |
|
|
| 297 |
< |
|
| 286 |
< |
|
| 287 |
< |
|
| 288 |
< |
index = mpiPlug->myAtomStart; |
| 289 |
< |
// for( i=0; i<mpiPlug->myNlocal; i++){ |
| 290 |
< |
// globalIndex[i] = index; |
| 291 |
< |
// index++; |
| 292 |
< |
// } |
| 293 |
< |
|
| 294 |
< |
// return globalIndex; |
| 297 |
> |
return globalIndex; |
| 298 |
|
} |
| 299 |
|
|
| 300 |
|
|