| 1 | module gb_pair | 
| 2 | use force_globals | 
| 3 | use definitions | 
| 4 | use simulation | 
| 5 | #ifdef IS_MPI | 
| 6 | use mpiSimulation | 
| 7 | #endif | 
| 8 |  | 
| 9 | implicit none | 
| 10 |  | 
| 11 | PRIVATE | 
| 12 |  | 
| 13 | logical, save :: gb_pair_initialized = .false. | 
| 14 | real(kind=dp), save :: gb_sigma | 
| 15 | real(kind=dp), save :: gb_l2b_ratio | 
| 16 | real(kind=dp), save :: gb_eps | 
| 17 | real(kind=dp), save :: gb_eps_ratio | 
| 18 | real(kind=dp), save :: gb_mu | 
| 19 | real(kind=dp), save :: gb_nu | 
| 20 |  | 
| 21 | public :: check_gb_pair_FF | 
| 22 | public :: set_gb_pair_params | 
| 23 | public :: do_gb_pair | 
| 24 |  | 
| 25 | contains | 
| 26 |  | 
| 27 | subroutine check_gb_pair_FF(status) | 
| 28 | integer :: status | 
| 29 | status = -1 | 
| 30 | if (gb_pair_initialized) status = 0 | 
| 31 | return | 
| 32 | end subroutine check_gb_pair_FF | 
| 33 |  | 
| 34 | subroutine set_gb_pair_params(sigma, l2b_ratio, eps, eps_ratio, mu, nu) | 
| 35 | real( kind = dp ), intent(in) :: sigma, l2b_ratio, eps, eps_ratio | 
| 36 | real( kind = dp ), intent(in) :: mu, nu | 
| 37 |  | 
| 38 | gb_sigma = sigma | 
| 39 | gb_l2b_ratio = l2b_ratio | 
| 40 | gb_eps = eps | 
| 41 | gb_eps_ratio = eps_ratio | 
| 42 | gb_mu = mu | 
| 43 | gb_nu = nu | 
| 44 |  | 
| 45 | gb_pair_initialized = .true. | 
| 46 | return | 
| 47 | end subroutine set_gb_pair_params | 
| 48 |  | 
| 49 |  | 
| 50 | subroutine do_gb_pair(atom1, atom2, d, r, r2, u_l, pot, f, t, & | 
| 51 | do_pot, do_stress) | 
| 52 |  | 
| 53 | integer, intent(in) :: atom1, atom2 | 
| 54 | real (kind=dp), intent(inout) :: r, r2 | 
| 55 | real (kind=dp), dimension(3), intent(in) :: d | 
| 56 | real (kind=dp) :: pot | 
| 57 | real (kind=dp), dimension(3,getNlocal()) :: u_l | 
| 58 | real (kind=dp), dimension(3,getNlocal()) :: f | 
| 59 | real (kind=dp), dimension(3,getNlocal()) :: t | 
| 60 | logical, intent(in) :: do_pot, do_stress | 
| 61 | real (kind = dp), dimension(3) :: ul1 | 
| 62 | real (kind = dp), dimension(3) :: ul2 | 
| 63 |  | 
| 64 | real(kind=dp) :: chi, chiprime, emu, s2 | 
| 65 | real(kind=dp) :: r4, rdotu1, rdotu2, u1dotu2, g, gp, gpi, gmu, gmum | 
| 66 | real(kind=dp) :: curlyE, enu, enum, eps, dotsum, dotdiff, ds2, dd2 | 
| 67 | real(kind=dp) :: opXdot, omXdot, opXpdot, omXpdot, pref, gfact | 
| 68 | real(kind=dp) :: BigR, Ri, Ri2, Ri6, Ri7, Ri12, Ri13, R126, R137 | 
| 69 | real(kind=dp) :: dru1dx, dru1dy, dru1dz | 
| 70 | real(kind=dp) :: dru2dx, dru2dy, dru2dz | 
| 71 | real(kind=dp) :: dBigRdx, dBigRdy, dBigRdz | 
| 72 | real(kind=dp) :: dBigRdu1x, dBigRdu1y, dBigRdu1z | 
| 73 | real(kind=dp) :: dBigRdu2x, dBigRdu2y, dBigRdu2z | 
| 74 | real(kind=dp) :: dUdx, dUdy, dUdz | 
| 75 | real(kind=dp) :: dUdu1x, dUdu1y, dUdu1z, dUdu2x, dUdu2y, dUdu2z | 
| 76 | real(kind=dp) :: dcE, dcEdu1x, dcEdu1y, dcEdu1z, dcEdu2x, dcEdu2y, dcEdu2z | 
| 77 | real(kind=dp) :: depsdu1x, depsdu1y, depsdu1z, depsdu2x, depsdu2y, depsdu2z | 
| 78 | real(kind=dp) :: drdx, drdy, drdz | 
| 79 | real(kind=dp) :: dgdx, dgdy, dgdz | 
| 80 | real(kind=dp) :: dgdu1x, dgdu1y, dgdu1z, dgdu2x, dgdu2y, dgdu2z | 
| 81 | real(kind=dp) :: dgpdx, dgpdy, dgpdz | 
| 82 | real(kind=dp) :: dgpdu1x, dgpdu1y, dgpdu1z, dgpdu2x, dgpdu2y, dgpdu2z | 
| 83 | real(kind=dp) :: line1a, line1bx, line1by, line1bz | 
| 84 | real(kind=dp) :: line2a, line2bx, line2by, line2bz | 
| 85 | real(kind=dp) :: line3a, line3b, line3, line3x, line3y, line3z | 
| 86 | real(kind=dp) :: term1x, term1y, term1z, term1u1x, term1u1y, term1u1z | 
| 87 | real(kind=dp) :: term1u2x, term1u2y, term1u2z | 
| 88 | real(kind=dp) :: term2a, term2b, term2u1x, term2u1y, term2u1z | 
| 89 | real(kind=dp) :: term2u2x, term2u2y, term2u2z | 
| 90 | real(kind=dp) :: yick1, yick2, mess1, mess2 | 
| 91 |  | 
| 92 | s2 = (gb_l2b_ratio)**2 | 
| 93 | emu = (gb_eps_ratio)**(1.0d0/gb_mu) | 
| 94 |  | 
| 95 | chi = (s2 - 1.0d0)/(s2 + 1.0d0) | 
| 96 | chiprime = (1.0d0 - emu)/(1.0d0 + emu) | 
| 97 |  | 
| 98 | r4 = r2*r2 | 
| 99 |  | 
| 100 | #ifdef IS_MPI | 
| 101 | ul1(1) = u_l_Row(1,atom1) | 
| 102 | ul1(2) = u_l_Row(2,atom1) | 
| 103 | ul1(3) = u_l_Row(3,atom1) | 
| 104 |  | 
| 105 | ul2(1) = u_l_Col(1,atom2) | 
| 106 | ul2(2) = u_l_Col(2,atom2) | 
| 107 | ul2(3) = u_l_Col(3,atom2) | 
| 108 | #else | 
| 109 | ul1(1) = u_l(1,atom1) | 
| 110 | ul1(2) = u_l(2,atom1) | 
| 111 | ul1(3) = u_l(3,atom1) | 
| 112 |  | 
| 113 | ul2(1) = u_l(1,atom2) | 
| 114 | ul2(2) = u_l(2,atom2) | 
| 115 | ul2(3) = u_l(3,atom2) | 
| 116 | #endif | 
| 117 |  | 
| 118 | dru1dx = ul1(1) | 
| 119 | dru2dx = ul2(1) | 
| 120 | dru1dy = ul1(2) | 
| 121 | dru2dy = ul2(2) | 
| 122 | dru1dz = ul1(3) | 
| 123 | dru2dz = ul2(3) | 
| 124 |  | 
| 125 | drdx = d(1) / r | 
| 126 | drdy = d(2) / r | 
| 127 | drdz = d(3) / r | 
| 128 |  | 
| 129 | ! do some dot products: | 
| 130 | ! NB the r in these dot products is the actual intermolecular vector, | 
| 131 | ! and is not the unit vector in that direction. | 
| 132 |  | 
| 133 | rdotu1 = d(1)*ul1(1) + d(2)*ul1(2) + d(3)*ul1(3) | 
| 134 | rdotu2 = d(1)*ul2(1) + d(2)*ul2(2) + d(3)*ul2(3) | 
| 135 | u1dotu2 = ul1(1)*ul2(1) + ul1(2)*ul2(2) +  ul1(3)*ul2(3) | 
| 136 |  | 
| 137 | ! This stuff is all for the calculation of g(Chi) and dgdx | 
| 138 | ! Line numbers roughly follow the lines in equation A25 of Luckhurst | 
| 139 | !   et al. Liquid Crystals 8, 451-464 (1990). | 
| 140 | ! We note however, that there are some major typos in that Appendix | 
| 141 | ! of the Luckhurst paper, particularly in equations A23, A29 and A31 | 
| 142 | ! We have attempted to correct them below. | 
| 143 |  | 
| 144 | dotsum = rdotu1+rdotu2 | 
| 145 | dotdiff = rdotu1-rdotu2 | 
| 146 | ds2 = dotsum*dotsum | 
| 147 | dd2 = dotdiff*dotdiff | 
| 148 |  | 
| 149 | opXdot = 1.0d0 + Chi*u1dotu2 | 
| 150 | omXdot = 1.0d0 - Chi*u1dotu2 | 
| 151 | opXpdot = 1.0d0 + ChiPrime*u1dotu2 | 
| 152 | omXpdot = 1.0d0 - ChiPrime*u1dotu2 | 
| 153 |  | 
| 154 | line1a = dotsum/opXdot | 
| 155 | line1bx = dru1dx + dru2dx | 
| 156 | line1by = dru1dy + dru2dy | 
| 157 | line1bz = dru1dz + dru2dz | 
| 158 |  | 
| 159 | line2a = dotdiff/omXdot | 
| 160 | line2bx = dru1dx - dru2dx | 
| 161 | line2by = dru1dy - dru2dy | 
| 162 | line2bz = dru1dz - dru2dz | 
| 163 |  | 
| 164 | term1x = -Chi*(line1a*line1bx + line2a*line2bx)/r2 | 
| 165 | term1y = -Chi*(line1a*line1by + line2a*line2by)/r2 | 
| 166 | term1z = -Chi*(line1a*line1bz + line2a*line2bz)/r2 | 
| 167 |  | 
| 168 | line3a = ds2/opXdot | 
| 169 | line3b = dd2/omXdot | 
| 170 | line3 = Chi*(line3a + line3b)/r4 | 
| 171 | line3x = d(1)*line3 | 
| 172 | line3y = d(2)*line3 | 
| 173 | line3z = d(3)*line3 | 
| 174 |  | 
| 175 | dgdx = term1x + line3x | 
| 176 | dgdy = term1y + line3y | 
| 177 | dgdz = term1z + line3z | 
| 178 |  | 
| 179 | term1u1x = 2.0d0*(line1a+line2a)*d(1) | 
| 180 | term1u1y = 2.0d0*(line1a+line2a)*d(2) | 
| 181 | term1u1z = 2.0d0*(line1a+line2a)*d(3) | 
| 182 | term1u2x = 2.0d0*(line1a-line2a)*d(1) | 
| 183 | term1u2y = 2.0d0*(line1a-line2a)*d(2) | 
| 184 | term1u2z = 2.0d0*(line1a-line2a)*d(3) | 
| 185 |  | 
| 186 | term2a = -line3a/opXdot | 
| 187 | term2b =  line3b/omXdot | 
| 188 |  | 
| 189 | term2u1x = Chi*ul2(1)*(term2a + term2b) | 
| 190 | term2u1y = Chi*ul2(2)*(term2a + term2b) | 
| 191 | term2u1z = Chi*ul2(3)*(term2a + term2b) | 
| 192 | term2u2x = Chi*ul1(1)*(term2a + term2b) | 
| 193 | term2u2y = Chi*ul1(2)*(term2a + term2b) | 
| 194 | term2u2z = Chi*ul1(3)*(term2a + term2b) | 
| 195 |  | 
| 196 | pref = -Chi*0.5d0/r2 | 
| 197 |  | 
| 198 | dgdu1x = pref*(term1u1x+term2u1x) | 
| 199 | dgdu1y = pref*(term1u1y+term2u1y) | 
| 200 | dgdu1z = pref*(term1u1z+term2u1z) | 
| 201 | dgdu2x = pref*(term1u2x+term2u2x) | 
| 202 | dgdu2y = pref*(term1u2y+term2u2y) | 
| 203 | dgdu2z = pref*(term1u2z+term2u2z) | 
| 204 |  | 
| 205 | g = 1.0d0 - Chi*(line3a + line3b)/(2.0d0*r2) | 
| 206 |  | 
| 207 | BigR = (r - gb_sigma*(g**(-0.5d0)) + gb_sigma)/gb_sigma | 
| 208 | Ri = 1.0d0/BigR | 
| 209 | Ri2 = Ri*Ri | 
| 210 | Ri6 = Ri2*Ri2*Ri2 | 
| 211 | Ri7 = Ri6*Ri | 
| 212 | Ri12 = Ri6*Ri6 | 
| 213 | Ri13 = Ri6*Ri7 | 
| 214 |  | 
| 215 | gfact = (g**(-1.5d0))*0.5d0 | 
| 216 |  | 
| 217 | dBigRdx = drdx/gb_sigma + dgdx*gfact | 
| 218 | dBigRdy = drdy/gb_sigma + dgdy*gfact | 
| 219 | dBigRdz = drdz/gb_sigma + dgdz*gfact | 
| 220 | dBigRdu1x = dgdu1x*gfact | 
| 221 | dBigRdu1y = dgdu1y*gfact | 
| 222 | dBigRdu1z = dgdu1z*gfact | 
| 223 | dBigRdu2x = dgdu2x*gfact | 
| 224 | dBigRdu2y = dgdu2y*gfact | 
| 225 | dBigRdu2z = dgdu2z*gfact | 
| 226 |  | 
| 227 | ! Now, we must do it again for g(ChiPrime) and dgpdx | 
| 228 |  | 
| 229 | line1a = dotsum/opXpdot | 
| 230 | line2a = dotdiff/omXpdot | 
| 231 | term1x = -ChiPrime*(line1a*line1bx + line2a*line2bx)/r2 | 
| 232 | term1y = -ChiPrime*(line1a*line1by + line2a*line2by)/r2 | 
| 233 | term1z = -ChiPrime*(line1a*line1bz + line2a*line2bz)/r2 | 
| 234 | line3a = ds2/opXpdot | 
| 235 | line3b = dd2/omXpdot | 
| 236 | line3 = ChiPrime*(line3a + line3b)/r4 | 
| 237 | line3x = d(1)*line3 | 
| 238 | line3y = d(2)*line3 | 
| 239 | line3z = d(3)*line3 | 
| 240 |  | 
| 241 | dgpdx = term1x + line3x | 
| 242 | dgpdy = term1y + line3y | 
| 243 | dgpdz = term1z + line3z | 
| 244 |  | 
| 245 | term1u1x = 2.0d0*(line1a+line2a)*d(1) | 
| 246 | term1u1y = 2.0d0*(line1a+line2a)*d(2) | 
| 247 | term1u1z = 2.0d0*(line1a+line2a)*d(3) | 
| 248 | term1u2x = 2.0d0*(line1a-line2a)*d(1) | 
| 249 | term1u2y = 2.0d0*(line1a-line2a)*d(2) | 
| 250 | term1u2z = 2.0d0*(line1a-line2a)*d(3) | 
| 251 |  | 
| 252 | term2a = -line3a/opXpdot | 
| 253 | term2b =  line3b/omXpdot | 
| 254 |  | 
| 255 | term2u1x = ChiPrime*ul2(1)*(term2a + term2b) | 
| 256 | term2u1y = ChiPrime*ul2(2)*(term2a + term2b) | 
| 257 | term2u1z = ChiPrime*ul2(3)*(term2a + term2b) | 
| 258 | term2u2x = ChiPrime*ul1(1)*(term2a + term2b) | 
| 259 | term2u2y = ChiPrime*ul1(2)*(term2a + term2b) | 
| 260 | term2u2z = ChiPrime*ul1(3)*(term2a + term2b) | 
| 261 |  | 
| 262 | pref = -ChiPrime*0.5d0/r2 | 
| 263 |  | 
| 264 | dgpdu1x = pref*(term1u1x+term2u1x) | 
| 265 | dgpdu1y = pref*(term1u1y+term2u1y) | 
| 266 | dgpdu1z = pref*(term1u1z+term2u1z) | 
| 267 | dgpdu2x = pref*(term1u2x+term2u2x) | 
| 268 | dgpdu2y = pref*(term1u2y+term2u2y) | 
| 269 | dgpdu2z = pref*(term1u2z+term2u2z) | 
| 270 |  | 
| 271 | gp = 1.0d0 - ChiPrime*(line3a + line3b)/(2.0d0*r2) | 
| 272 | gmu = gp**gb_mu | 
| 273 | gpi = 1.0d0 / gp | 
| 274 | gmum = gmu*gpi | 
| 275 |  | 
| 276 | ! write(*,*) atom1, atom2, Chi, u1dotu2 | 
| 277 | curlyE = 1.0d0/dsqrt(1.0d0 - Chi*Chi*u1dotu2*u1dotu2) | 
| 278 |  | 
| 279 | dcE = (curlyE**3)*Chi*Chi*u1dotu2 | 
| 280 |  | 
| 281 | dcEdu1x = dcE*ul2(1) | 
| 282 | dcEdu1y = dcE*ul2(2) | 
| 283 | dcEdu1z = dcE*ul2(3) | 
| 284 | dcEdu2x = dcE*ul1(1) | 
| 285 | dcEdu2y = dcE*ul1(2) | 
| 286 | dcEdu2z = dcE*ul1(3) | 
| 287 |  | 
| 288 | enu = curlyE**gb_nu | 
| 289 | enum = enu/curlyE | 
| 290 |  | 
| 291 | eps = gb_eps*enu*gmu | 
| 292 |  | 
| 293 | yick1 = gb_eps*enu*gb_mu*gmum | 
| 294 | yick2 = gb_eps*gmu*gb_nu*enum | 
| 295 |  | 
| 296 | depsdu1x = yick1*dgpdu1x + yick2*dcEdu1x | 
| 297 | depsdu1y = yick1*dgpdu1y + yick2*dcEdu1y | 
| 298 | depsdu1z = yick1*dgpdu1z + yick2*dcEdu1z | 
| 299 | depsdu2x = yick1*dgpdu2x + yick2*dcEdu2x | 
| 300 | depsdu2y = yick1*dgpdu2y + yick2*dcEdu2y | 
| 301 | depsdu2z = yick1*dgpdu2z + yick2*dcEdu2z | 
| 302 |  | 
| 303 | R126 = Ri12 - Ri6 | 
| 304 | R137 = 6.0d0*Ri7 - 12.0d0*Ri13 | 
| 305 |  | 
| 306 | mess1 = gmu*R137 | 
| 307 | mess2 = R126*gb_mu*gmum | 
| 308 |  | 
| 309 | dUdx = 4.0d0*gb_eps*enu*(mess1*dBigRdx + mess2*dgpdx) | 
| 310 | dUdy = 4.0d0*gb_eps*enu*(mess1*dBigRdy + mess2*dgpdy) | 
| 311 | dUdz = 4.0d0*gb_eps*enu*(mess1*dBigRdz + mess2*dgpdz) | 
| 312 |  | 
| 313 | dUdu1x = 4.0d0*(R126*depsdu1x + eps*R137*dBigRdu1x) | 
| 314 | dUdu1y = 4.0d0*(R126*depsdu1y + eps*R137*dBigRdu1y) | 
| 315 | dUdu1z = 4.0d0*(R126*depsdu1z + eps*R137*dBigRdu1z) | 
| 316 | dUdu2x = 4.0d0*(R126*depsdu2x + eps*R137*dBigRdu2x) | 
| 317 | dUdu2y = 4.0d0*(R126*depsdu2y + eps*R137*dBigRdu2y) | 
| 318 | dUdu2z = 4.0d0*(R126*depsdu2z + eps*R137*dBigRdu2z) | 
| 319 |  | 
| 320 | #ifdef IS_MPI | 
| 321 | f_Row(1,atom1) = f_Row(1,atom1) + dUdx | 
| 322 | f_Row(2,atom1) = f_Row(2,atom1) + dUdy | 
| 323 | f_Row(3,atom1) = f_Row(3,atom1) + dUdz | 
| 324 |  | 
| 325 | f_Col(1,atom2) = f_Col(1,atom2) - dUdx | 
| 326 | f_Col(2,atom2) = f_Col(2,atom2) - dUdy | 
| 327 | f_Col(3,atom2) = f_Col(3,atom2) - dUdz | 
| 328 |  | 
| 329 | t_Row(1,atom1) = t_Row(1,atom1) - ul1(2)*dUdu1z + ul1(3)*dUdu1y | 
| 330 | t_Row(2,atom1) = t_Row(2,atom1) - ul1(3)*dUdu1x + ul1(1)*dUdu1z | 
| 331 | t_Row(3,atom1) = t_Row(3,atom1) - ul1(1)*dUdu1y + ul1(2)*dUdu1x | 
| 332 |  | 
| 333 | t_Col(1,atom2) = t_Col(1,atom2) - ul2(2)*dUdu2z + ul2(3)*dUdu2y | 
| 334 | t_Col(2,atom2) = t_Col(2,atom2) - ul2(3)*dUdu2x + ul2(1)*dUdu2z | 
| 335 | t_Col(3,atom2) = t_Col(3,atom2) - ul2(1)*dUdu2y + ul2(2)*dUdu2x | 
| 336 | #else | 
| 337 | f(1,atom1) = f(1,atom1) + dUdx | 
| 338 | f(2,atom1) = f(2,atom1) + dUdy | 
| 339 | f(3,atom1) = f(3,atom1) + dUdz | 
| 340 |  | 
| 341 | f(1,atom2) = f(1,atom2) - dUdx | 
| 342 | f(2,atom2) = f(2,atom2) - dUdy | 
| 343 | f(3,atom2) = f(3,atom2) - dUdz | 
| 344 |  | 
| 345 | t(1,atom1) = t(1,atom1) - ul1(2)*dUdu1z + ul1(3)*dUdu1y | 
| 346 | t(2,atom1) = t(2,atom1) - ul1(3)*dUdu1x + ul1(1)*dUdu1z | 
| 347 | t(3,atom1) = t(3,atom1) - ul1(1)*dUdu1y + ul1(2)*dUdu1x | 
| 348 |  | 
| 349 | t(1,atom2) = t(1,atom2) - ul2(2)*dUdu2z + ul2(3)*dUdu2y | 
| 350 | t(2,atom2) = t(2,atom2) - ul2(3)*dUdu2x + ul2(1)*dUdu2z | 
| 351 | t(3,atom2) = t(3,atom2) - ul2(1)*dUdu2y + ul2(2)*dUdu2x | 
| 352 | #endif | 
| 353 |  | 
| 354 | if (do_stress) then | 
| 355 | tau_Temp(1) = tau_Temp(1) + dUdx * d(1) | 
| 356 | tau_Temp(2) = tau_Temp(2) + dUdx * d(2) | 
| 357 | tau_Temp(3) = tau_Temp(3) + dUdx * d(3) | 
| 358 | tau_Temp(4) = tau_Temp(4) + dUdy * d(1) | 
| 359 | tau_Temp(5) = tau_Temp(5) + dUdy * d(2) | 
| 360 | tau_Temp(6) = tau_Temp(6) + dUdy * d(3) | 
| 361 | tau_Temp(7) = tau_Temp(7) + dUdz * d(1) | 
| 362 | tau_Temp(8) = tau_Temp(8) + dUdz * d(2) | 
| 363 | tau_Temp(9) = tau_Temp(9) + dUdz * d(3) | 
| 364 | virial_Temp = virial_Temp + (tau_Temp(1) + tau_Temp(5) + tau_Temp(9)) | 
| 365 | endif | 
| 366 |  | 
| 367 | if (do_pot) then | 
| 368 | #ifdef IS_MPI | 
| 369 | pot_row(atom1) = pot_row(atom1) + 2.0d0*eps*R126 | 
| 370 | pot_col(atom2) = pot_col(atom2) + 2.0d0*eps*R126 | 
| 371 | #else | 
| 372 | pot = pot + 4.0*eps*R126 | 
| 373 | #endif | 
| 374 | endif | 
| 375 |  | 
| 376 | return | 
| 377 | end subroutine do_gb_pair | 
| 378 |  | 
| 379 | end module gb_pair | 
| 380 |  | 
| 381 |  |