| 4 |
|
|
| 5 |
|
#ifdef IS_MPI |
| 6 |
|
#include <mpi.h> |
| 7 |
– |
#include <mpi++.h> |
| 7 |
|
#endif //is_mpi |
| 8 |
|
|
| 9 |
|
#include "Thermo.hpp" |
| 10 |
|
#include "SRI.hpp" |
| 11 |
|
#include "Integrator.hpp" |
| 12 |
+ |
#include "simError.h" |
| 13 |
|
|
| 14 |
|
#ifdef IS_MPI |
| 15 |
|
#define __C |
| 72 |
|
} |
| 73 |
|
} |
| 74 |
|
#ifdef IS_MPI |
| 75 |
< |
MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM); |
| 75 |
> |
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
| 76 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 77 |
|
kinetic = kinetic_global; |
| 78 |
|
#endif //is_mpi |
| 79 |
|
|
| 87 |
|
double potential_local; |
| 88 |
|
double potential; |
| 89 |
|
int el, nSRI; |
| 90 |
< |
SRI** sris; |
| 90 |
> |
Molecule* molecules; |
| 91 |
|
|
| 92 |
< |
sris = entry_plug->sr_interactions; |
| 92 |
> |
molecules = entry_plug->molecules; |
| 93 |
|
nSRI = entry_plug->n_SRI; |
| 94 |
|
|
| 95 |
|
potential_local = 0.0; |
| 96 |
+ |
potential = 0.0; |
| 97 |
|
potential_local += entry_plug->lrPot; |
| 98 |
|
|
| 99 |
< |
for( el=0; el<nSRI; el++ ){ |
| 100 |
< |
potential_local += sris[el]->get_potential(); |
| 99 |
> |
for( el=0; el<entry_plug->n_mol; el++ ){ |
| 100 |
> |
potential_local += molecules[el].getPotential(); |
| 101 |
|
} |
| 102 |
|
|
| 103 |
|
// Get total potential for entire system from MPI. |
| 104 |
|
#ifdef IS_MPI |
| 105 |
< |
MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM); |
| 105 |
> |
MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, |
| 106 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 107 |
|
#else |
| 108 |
|
potential = potential_local; |
| 109 |
|
#endif // is_mpi |
| 110 |
|
|
| 111 |
+ |
#ifdef IS_MPI |
| 112 |
+ |
/* |
| 113 |
+ |
std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
| 114 |
+ |
*/ |
| 115 |
+ |
#endif |
| 116 |
+ |
|
| 117 |
|
return potential; |
| 118 |
|
} |
| 119 |
|
|
| 129 |
|
|
| 130 |
|
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
| 131 |
|
double temperature; |
| 123 |
– |
int ndf_local, ndf; |
| 132 |
|
|
| 133 |
< |
ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
| 126 |
< |
- entry_plug->n_constraints; |
| 127 |
< |
|
| 128 |
< |
#ifdef IS_MPI |
| 129 |
< |
MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
| 130 |
< |
#else |
| 131 |
< |
ndf = ndf_local; |
| 132 |
< |
#endif |
| 133 |
< |
|
| 134 |
< |
ndf = ndf - 3; |
| 135 |
< |
|
| 136 |
< |
temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); |
| 133 |
> |
temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb ); |
| 134 |
|
return temperature; |
| 135 |
|
} |
| 136 |
|
|
| 137 |
|
double Thermo::getPressure(){ |
| 138 |
+ |
// returns pressure in units amu*fs^-2*Ang^-1 |
| 139 |
+ |
// routine derived via viral theorem description in: |
| 140 |
+ |
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
| 141 |
|
|
| 142 |
< |
// const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm |
| 143 |
< |
// const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa |
| 144 |
< |
// const double conv_A_m = 1.0E-10; //convert A -> m |
| 142 |
> |
const double e_convert = 4.184e-4; |
| 143 |
> |
const double p_convert = 1.63882576e8; |
| 144 |
> |
double molmass; |
| 145 |
> |
double vcom[3]; |
| 146 |
> |
double p_local, p_sum, p_mol, virial; |
| 147 |
> |
double theBox[3]; |
| 148 |
> |
double* tau; |
| 149 |
> |
int i, nMols; |
| 150 |
> |
Molecule* molecules; |
| 151 |
|
|
| 152 |
< |
return 0.0; |
| 152 |
> |
nMols = entry_plug->n_mol; |
| 153 |
> |
molecules = entry_plug->molecules; |
| 154 |
> |
tau = entry_plug->tau; |
| 155 |
> |
|
| 156 |
> |
// use velocities of molecular centers of mass and molecular masses: |
| 157 |
> |
p_local = 0.0; |
| 158 |
> |
|
| 159 |
> |
for (i=0; i < nMols; i++) { |
| 160 |
> |
molmass = molecules[i].getCOMvel(vcom); |
| 161 |
> |
p_local += (vcom[0]*vcom[0] + vcom[1]*vcom[1] + vcom[2]*vcom[2]) * molmass; |
| 162 |
> |
} |
| 163 |
> |
|
| 164 |
> |
// Get total for entire system from MPI. |
| 165 |
> |
|
| 166 |
> |
#ifdef IS_MPI |
| 167 |
> |
MPI_Allreduce(&p_local,&p_sum,1,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
| 168 |
> |
#else |
| 169 |
> |
p_sum = p_local; |
| 170 |
> |
#endif // is_mpi |
| 171 |
> |
|
| 172 |
> |
virial = tau[0] + tau[4] + tau[8]; |
| 173 |
> |
entry_plug->getBox(theBox); |
| 174 |
> |
|
| 175 |
> |
p_mol = p_convert * (p_sum - virial*e_convert) / |
| 176 |
> |
(3.0 * theBox[0] * theBox[1]* theBox[2]); |
| 177 |
> |
|
| 178 |
> |
return p_mol; |
| 179 |
|
} |
| 180 |
|
|
| 181 |
|
void Thermo::velocitize() { |
| 184 |
|
double vx, vy, vz; |
| 185 |
|
double jx, jy, jz; |
| 186 |
|
int i, vr, vd; // velocity randomizer loop counters |
| 187 |
< |
double *vdrift; |
| 187 |
> |
double vdrift[3]; |
| 188 |
|
double vbar; |
| 189 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
| 190 |
|
double av2; |
| 191 |
|
double kebar; |
| 160 |
– |
int ndf; // number of degrees of freedom |
| 161 |
– |
int ndfRaw; // the raw number of degrees of freedom |
| 192 |
|
int n_atoms; |
| 193 |
|
Atom** atoms; |
| 194 |
|
DirectionalAtom* dAtom; |
| 202 |
|
n_oriented = entry_plug->n_oriented; |
| 203 |
|
n_constraints = entry_plug->n_constraints; |
| 204 |
|
|
| 205 |
< |
|
| 206 |
< |
ndfRaw = 3 * n_atoms + 3 * n_oriented; |
| 177 |
< |
ndf = ndfRaw - n_constraints - 3; |
| 178 |
< |
kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); |
| 205 |
> |
kebar = kb * temperature * (double)entry_plug->ndf / |
| 206 |
> |
( 2.0 * (double)entry_plug->ndfRaw ); |
| 207 |
|
|
| 208 |
|
for(vr = 0; vr < n_atoms; vr++){ |
| 209 |
|
|
| 211 |
|
|
| 212 |
|
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
| 213 |
|
vbar = sqrt( av2 ); |
| 214 |
< |
|
| 214 |
> |
|
| 215 |
|
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
| 216 |
|
|
| 217 |
|
// picks random velocities from a gaussian distribution |
| 228 |
|
|
| 229 |
|
// Get the Center of Mass drift velocity. |
| 230 |
|
|
| 231 |
< |
vdrift = getCOMVel(); |
| 231 |
> |
getCOMVel(vdrift); |
| 232 |
|
|
| 233 |
|
// Corrects for the center of mass drift. |
| 234 |
|
// sums all the momentum and divides by total mass. |
| 260 |
|
|
| 261 |
|
vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); |
| 262 |
|
jy = vbar * gaussStream->getGaussian(); |
| 263 |
< |
|
| 263 |
> |
|
| 264 |
|
vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); |
| 265 |
|
jz = vbar * gaussStream->getGaussian(); |
| 266 |
|
|
| 272 |
|
} |
| 273 |
|
} |
| 274 |
|
|
| 275 |
< |
double* Thermo::getCOMVel(){ |
| 275 |
> |
void Thermo::getCOMVel(double vdrift[3]){ |
| 276 |
|
|
| 277 |
|
double mtot, mtot_local; |
| 250 |
– |
double* vdrift; |
| 278 |
|
double vdrift_local[3]; |
| 279 |
|
int vd, n_atoms; |
| 280 |
|
Atom** atoms; |
| 281 |
|
|
| 255 |
– |
vdrift = new double[3]; |
| 282 |
|
// We are very careless here with the distinction between n_atoms and n_local |
| 283 |
|
// We should really fix this before someone pokes an eye out. |
| 284 |
|
|
| 300 |
|
} |
| 301 |
|
|
| 302 |
|
#ifdef IS_MPI |
| 303 |
< |
MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM); |
| 304 |
< |
MPI::COMM_WORLD.Allreduce(&vdrift_local,&vdrift,3,MPI_DOUBLE,MPI_SUM); |
| 303 |
> |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 304 |
> |
MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 305 |
|
#else |
| 306 |
|
mtot = mtot_local; |
| 307 |
|
for(vd = 0; vd < 3; vd++) { |
| 313 |
|
vdrift[vd] = vdrift[vd] / mtot; |
| 314 |
|
} |
| 315 |
|
|
| 290 |
– |
return vdrift; |
| 316 |
|
} |
| 317 |
|
|