| 10 |
|
#include "SRI.hpp" |
| 11 |
|
#include "Integrator.hpp" |
| 12 |
|
#include "simError.h" |
| 13 |
+ |
#include "MatVec3.h" |
| 14 |
|
|
| 15 |
|
#ifdef IS_MPI |
| 16 |
|
#define __C |
| 34 |
|
double kinetic; |
| 35 |
|
double amass; |
| 36 |
|
double aVel[3], aJ[3], I[3][3]; |
| 37 |
< |
int j, kl; |
| 37 |
> |
int i, j, k, kl; |
| 38 |
|
|
| 38 |
– |
DirectionalAtom *dAtom; |
| 39 |
– |
|
| 40 |
– |
int n_atoms; |
| 39 |
|
double kinetic_global; |
| 40 |
< |
Atom** atoms; |
| 43 |
< |
|
| 40 |
> |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
| 41 |
|
|
| 45 |
– |
n_atoms = info->n_atoms; |
| 46 |
– |
atoms = info->atoms; |
| 47 |
– |
|
| 42 |
|
kinetic = 0.0; |
| 43 |
|
kinetic_global = 0.0; |
| 50 |
– |
for( kl=0; kl < n_atoms; kl++ ){ |
| 51 |
– |
|
| 52 |
– |
atoms[kl]->getVel(aVel); |
| 53 |
– |
amass = atoms[kl]->getMass(); |
| 54 |
– |
|
| 55 |
– |
for (j=0; j < 3; j++) |
| 56 |
– |
kinetic += amass * aVel[j] * aVel[j]; |
| 44 |
|
|
| 45 |
< |
if( atoms[kl]->isDirectional() ){ |
| 46 |
< |
|
| 47 |
< |
dAtom = (DirectionalAtom *)atoms[kl]; |
| 45 |
> |
for (kl=0; kl<integrableObjects.size(); kl++) { |
| 46 |
> |
integrableObjects[kl]->getVel(aVel); |
| 47 |
> |
amass = integrableObjects[kl]->getMass(); |
| 48 |
|
|
| 49 |
< |
dAtom->getJ( aJ ); |
| 50 |
< |
dAtom->getI( I ); |
| 51 |
< |
|
| 52 |
< |
for (j=0; j<3; j++) |
| 53 |
< |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
| 54 |
< |
|
| 55 |
< |
} |
| 49 |
> |
for(j=0; j<3; j++) |
| 50 |
> |
kinetic += amass*aVel[j]*aVel[j]; |
| 51 |
> |
|
| 52 |
> |
if (integrableObjects[kl]->isDirectional()){ |
| 53 |
> |
|
| 54 |
> |
integrableObjects[kl]->getJ( aJ ); |
| 55 |
> |
integrableObjects[kl]->getI( I ); |
| 56 |
> |
|
| 57 |
> |
if (integrableObjects[kl]->isLinear()) { |
| 58 |
> |
i = integrableObjects[kl]->linearAxis(); |
| 59 |
> |
j = (i+1)%3; |
| 60 |
> |
k = (i+2)%3; |
| 61 |
> |
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
| 62 |
> |
} else { |
| 63 |
> |
for (j=0; j<3; j++) |
| 64 |
> |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
| 65 |
> |
} |
| 66 |
> |
} |
| 67 |
|
} |
| 68 |
|
#ifdef IS_MPI |
| 69 |
|
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
| 70 |
|
MPI_SUM, MPI_COMM_WORLD); |
| 71 |
|
kinetic = kinetic_global; |
| 72 |
|
#endif //is_mpi |
| 73 |
< |
|
| 73 |
> |
|
| 74 |
|
kinetic = kinetic * 0.5 / e_convert; |
| 75 |
|
|
| 76 |
|
return kinetic; |
| 102 |
|
potential = potential_local; |
| 103 |
|
#endif // is_mpi |
| 104 |
|
|
| 107 |
– |
#ifdef IS_MPI |
| 108 |
– |
/* |
| 109 |
– |
std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
| 110 |
– |
*/ |
| 111 |
– |
#endif |
| 112 |
– |
|
| 105 |
|
return potential; |
| 106 |
|
} |
| 107 |
|
|
| 117 |
|
|
| 118 |
|
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
| 119 |
|
double temperature; |
| 120 |
< |
|
| 120 |
> |
|
| 121 |
|
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
| 122 |
|
return temperature; |
| 123 |
|
} |
| 196 |
|
const double e_convert = 4.184e-4; |
| 197 |
|
|
| 198 |
|
double molmass, volume; |
| 199 |
< |
double vcom[3]; |
| 199 |
> |
double vcom[3], pcom[3], fcom[3], scaled[3]; |
| 200 |
|
double p_local[9], p_global[9]; |
| 201 |
|
int i, j, k, nMols; |
| 202 |
|
Molecule* molecules; |
| 211 |
|
p_global[i] = 0.0; |
| 212 |
|
} |
| 213 |
|
|
| 214 |
< |
for (i=0; i < nMols; i++) { |
| 223 |
< |
molmass = molecules[i].getCOMvel(vcom); |
| 214 |
> |
for (i=0; i < info->integrableObjects.size(); i++) { |
| 215 |
|
|
| 216 |
< |
p_local[0] += molmass * (vcom[0] * vcom[0]); |
| 217 |
< |
p_local[1] += molmass * (vcom[0] * vcom[1]); |
| 218 |
< |
p_local[2] += molmass * (vcom[0] * vcom[2]); |
| 219 |
< |
p_local[3] += molmass * (vcom[1] * vcom[0]); |
| 220 |
< |
p_local[4] += molmass * (vcom[1] * vcom[1]); |
| 221 |
< |
p_local[5] += molmass * (vcom[1] * vcom[2]); |
| 222 |
< |
p_local[6] += molmass * (vcom[2] * vcom[0]); |
| 223 |
< |
p_local[7] += molmass * (vcom[2] * vcom[1]); |
| 224 |
< |
p_local[8] += molmass * (vcom[2] * vcom[2]); |
| 216 |
> |
molmass = info->integrableObjects[i]->getMass(); |
| 217 |
> |
|
| 218 |
> |
info->integrableObjects[i]->getVel(vcom); |
| 219 |
> |
info->integrableObjects[i]->getPos(pcom); |
| 220 |
> |
info->integrableObjects[i]->getFrc(fcom); |
| 221 |
> |
|
| 222 |
> |
matVecMul3(info->HmatInv, pcom, scaled); |
| 223 |
> |
|
| 224 |
> |
for(j=0; j<3; j++) |
| 225 |
> |
scaled[j] -= roundMe(scaled[j]); |
| 226 |
> |
|
| 227 |
> |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 228 |
> |
|
| 229 |
> |
matVecMul3(info->Hmat, scaled, pcom); |
| 230 |
> |
|
| 231 |
> |
p_local[0] += molmass * (vcom[0] * vcom[0]) + fcom[0]*pcom[0]*eConvert; |
| 232 |
> |
p_local[1] += molmass * (vcom[0] * vcom[1]) + fcom[0]*pcom[1]*eConvert; |
| 233 |
> |
p_local[2] += molmass * (vcom[0] * vcom[2]) + fcom[0]*pcom[2]*eConvert; |
| 234 |
> |
p_local[3] += molmass * (vcom[1] * vcom[0]) + fcom[1]*pcom[0]*eConvert; |
| 235 |
> |
p_local[4] += molmass * (vcom[1] * vcom[1]) + fcom[1]*pcom[1]*eConvert; |
| 236 |
> |
p_local[5] += molmass * (vcom[1] * vcom[2]) + fcom[1]*pcom[2]*eConvert; |
| 237 |
> |
p_local[6] += molmass * (vcom[2] * vcom[0]) + fcom[2]*pcom[0]*eConvert; |
| 238 |
> |
p_local[7] += molmass * (vcom[2] * vcom[1]) + fcom[2]*pcom[1]*eConvert; |
| 239 |
> |
p_local[8] += molmass * (vcom[2] * vcom[2]) + fcom[2]*pcom[2]*eConvert; |
| 240 |
> |
|
| 241 |
|
} |
| 242 |
|
|
| 243 |
|
// Get total for entire system from MPI. |
| 255 |
|
for(i = 0; i < 3; i++) { |
| 256 |
|
for (j = 0; j < 3; j++) { |
| 257 |
|
k = 3*i + j; |
| 258 |
< |
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
| 258 |
> |
press[i][j] = p_global[k] / volume; |
| 259 |
|
|
| 260 |
|
} |
| 261 |
|
} |
| 264 |
|
void Thermo::velocitize() { |
| 265 |
|
|
| 266 |
|
double aVel[3], aJ[3], I[3][3]; |
| 267 |
< |
int i, j, vr, vd; // velocity randomizer loop counters |
| 267 |
> |
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
| 268 |
|
double vdrift[3]; |
| 269 |
|
double vbar; |
| 270 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
| 271 |
|
double av2; |
| 272 |
|
double kebar; |
| 266 |
– |
int n_atoms; |
| 267 |
– |
Atom** atoms; |
| 268 |
– |
DirectionalAtom* dAtom; |
| 273 |
|
double temperature; |
| 274 |
< |
int n_oriented; |
| 271 |
< |
int n_constraints; |
| 274 |
> |
int nobj; |
| 275 |
|
|
| 276 |
< |
atoms = info->atoms; |
| 277 |
< |
n_atoms = info->n_atoms; |
| 276 |
> |
nobj = info->integrableObjects.size(); |
| 277 |
> |
|
| 278 |
|
temperature = info->target_temp; |
| 276 |
– |
n_oriented = info->n_oriented; |
| 277 |
– |
n_constraints = info->n_constraints; |
| 279 |
|
|
| 280 |
|
kebar = kb * temperature * (double)info->ndfRaw / |
| 281 |
|
( 2.0 * (double)info->ndf ); |
| 282 |
|
|
| 283 |
< |
for(vr = 0; vr < n_atoms; vr++){ |
| 283 |
> |
for(vr = 0; vr < nobj; vr++){ |
| 284 |
|
|
| 285 |
|
// uses equipartition theory to solve for vbar in angstrom/fs |
| 286 |
|
|
| 287 |
< |
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
| 287 |
> |
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
| 288 |
|
vbar = sqrt( av2 ); |
| 289 |
< |
|
| 289 |
< |
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
| 290 |
< |
|
| 289 |
> |
|
| 290 |
|
// picks random velocities from a gaussian distribution |
| 291 |
|
// centered on vbar |
| 292 |
|
|
| 293 |
|
for (j=0; j<3; j++) |
| 294 |
|
aVel[j] = vbar * gaussStream->getGaussian(); |
| 295 |
|
|
| 296 |
< |
atoms[vr]->setVel( aVel ); |
| 296 |
> |
info->integrableObjects[vr]->setVel( aVel ); |
| 297 |
> |
|
| 298 |
> |
if(info->integrableObjects[vr]->isDirectional()){ |
| 299 |
|
|
| 300 |
+ |
info->integrableObjects[vr]->getI( I ); |
| 301 |
+ |
|
| 302 |
+ |
if (info->integrableObjects[vr]->isLinear()) { |
| 303 |
+ |
|
| 304 |
+ |
l= info->integrableObjects[vr]->linearAxis(); |
| 305 |
+ |
m = (l+1)%3; |
| 306 |
+ |
n = (l+2)%3; |
| 307 |
+ |
|
| 308 |
+ |
aJ[l] = 0.0; |
| 309 |
+ |
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
| 310 |
+ |
aJ[m] = vbar * gaussStream->getGaussian(); |
| 311 |
+ |
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
| 312 |
+ |
aJ[n] = vbar * gaussStream->getGaussian(); |
| 313 |
+ |
|
| 314 |
+ |
} else { |
| 315 |
+ |
for (j = 0 ; j < 3; j++) { |
| 316 |
+ |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
| 317 |
+ |
aJ[j] = vbar * gaussStream->getGaussian(); |
| 318 |
+ |
} |
| 319 |
+ |
} // else isLinear |
| 320 |
+ |
|
| 321 |
+ |
info->integrableObjects[vr]->setJ( aJ ); |
| 322 |
+ |
|
| 323 |
+ |
}//isDirectional |
| 324 |
+ |
|
| 325 |
|
} |
| 326 |
|
|
| 327 |
|
// Get the Center of Mass drift velocity. |
| 331 |
|
// Corrects for the center of mass drift. |
| 332 |
|
// sums all the momentum and divides by total mass. |
| 333 |
|
|
| 334 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
| 334 |
> |
for(vd = 0; vd < nobj; vd++){ |
| 335 |
|
|
| 336 |
< |
atoms[vd]->getVel(aVel); |
| 336 |
> |
info->integrableObjects[vd]->getVel(aVel); |
| 337 |
|
|
| 338 |
|
for (j=0; j < 3; j++) |
| 339 |
|
aVel[j] -= vdrift[j]; |
| 340 |
|
|
| 341 |
< |
atoms[vd]->setVel( aVel ); |
| 341 |
> |
info->integrableObjects[vd]->setVel( aVel ); |
| 342 |
|
} |
| 317 |
– |
if( n_oriented ){ |
| 318 |
– |
|
| 319 |
– |
for( i=0; i<n_atoms; i++ ){ |
| 320 |
– |
|
| 321 |
– |
if( atoms[i]->isDirectional() ){ |
| 322 |
– |
|
| 323 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
| 324 |
– |
dAtom->getI( I ); |
| 325 |
– |
|
| 326 |
– |
for (j = 0 ; j < 3; j++) { |
| 343 |
|
|
| 328 |
– |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
| 329 |
– |
aJ[j] = vbar * gaussStream->getGaussian(); |
| 330 |
– |
|
| 331 |
– |
} |
| 332 |
– |
|
| 333 |
– |
dAtom->setJ( aJ ); |
| 334 |
– |
|
| 335 |
– |
} |
| 336 |
– |
} |
| 337 |
– |
} |
| 344 |
|
} |
| 345 |
|
|
| 346 |
|
void Thermo::getCOMVel(double vdrift[3]){ |
| 348 |
|
double mtot, mtot_local; |
| 349 |
|
double aVel[3], amass; |
| 350 |
|
double vdrift_local[3]; |
| 351 |
< |
int vd, n_atoms, j; |
| 352 |
< |
Atom** atoms; |
| 351 |
> |
int vd, j; |
| 352 |
> |
int nobj; |
| 353 |
|
|
| 354 |
< |
// We are very careless here with the distinction between n_atoms and n_local |
| 349 |
< |
// We should really fix this before someone pokes an eye out. |
| 354 |
> |
nobj = info->integrableObjects.size(); |
| 355 |
|
|
| 351 |
– |
n_atoms = info->n_atoms; |
| 352 |
– |
atoms = info->atoms; |
| 353 |
– |
|
| 356 |
|
mtot_local = 0.0; |
| 357 |
|
vdrift_local[0] = 0.0; |
| 358 |
|
vdrift_local[1] = 0.0; |
| 359 |
|
vdrift_local[2] = 0.0; |
| 360 |
|
|
| 361 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
| 361 |
> |
for(vd = 0; vd < nobj; vd++){ |
| 362 |
|
|
| 363 |
< |
amass = atoms[vd]->getMass(); |
| 364 |
< |
atoms[vd]->getVel( aVel ); |
| 363 |
> |
amass = info->integrableObjects[vd]->getMass(); |
| 364 |
> |
info->integrableObjects[vd]->getVel( aVel ); |
| 365 |
|
|
| 366 |
|
for(j = 0; j < 3; j++) |
| 367 |
|
vdrift_local[j] += aVel[j] * amass; |
| 390 |
|
double mtot, mtot_local; |
| 391 |
|
double aPos[3], amass; |
| 392 |
|
double COM_local[3]; |
| 393 |
< |
int i, n_atoms, j; |
| 394 |
< |
Atom** atoms; |
| 393 |
> |
int i, j; |
| 394 |
> |
int nobj; |
| 395 |
|
|
| 394 |
– |
// We are very careless here with the distinction between n_atoms and n_local |
| 395 |
– |
// We should really fix this before someone pokes an eye out. |
| 396 |
– |
|
| 397 |
– |
n_atoms = info->n_atoms; |
| 398 |
– |
atoms = info->atoms; |
| 399 |
– |
|
| 396 |
|
mtot_local = 0.0; |
| 397 |
|
COM_local[0] = 0.0; |
| 398 |
|
COM_local[1] = 0.0; |
| 399 |
|
COM_local[2] = 0.0; |
| 400 |
< |
|
| 401 |
< |
for(i = 0; i < n_atoms; i++){ |
| 400 |
> |
|
| 401 |
> |
nobj = info->integrableObjects.size(); |
| 402 |
> |
for(i = 0; i < nobj; i++){ |
| 403 |
|
|
| 404 |
< |
amass = atoms[i]->getMass(); |
| 405 |
< |
atoms[i]->getPos( aPos ); |
| 404 |
> |
amass = info->integrableObjects[i]->getMass(); |
| 405 |
> |
info->integrableObjects[i]->getPos( aPos ); |
| 406 |
|
|
| 407 |
|
for(j = 0; j < 3; j++) |
| 408 |
|
COM_local[j] += aPos[j] * amass; |
| 424 |
|
COM[i] = COM[i] / mtot; |
| 425 |
|
} |
| 426 |
|
} |
| 427 |
+ |
|
| 428 |
+ |
void Thermo::removeCOMdrift() { |
| 429 |
+ |
double vdrift[3], aVel[3]; |
| 430 |
+ |
int vd, j, nobj; |
| 431 |
+ |
|
| 432 |
+ |
nobj = info->integrableObjects.size(); |
| 433 |
+ |
|
| 434 |
+ |
// Get the Center of Mass drift velocity. |
| 435 |
+ |
|
| 436 |
+ |
getCOMVel(vdrift); |
| 437 |
+ |
|
| 438 |
+ |
// Corrects for the center of mass drift. |
| 439 |
+ |
// sums all the momentum and divides by total mass. |
| 440 |
+ |
|
| 441 |
+ |
for(vd = 0; vd < nobj; vd++){ |
| 442 |
+ |
|
| 443 |
+ |
info->integrableObjects[vd]->getVel(aVel); |
| 444 |
+ |
|
| 445 |
+ |
for (j=0; j < 3; j++) |
| 446 |
+ |
aVel[j] -= vdrift[j]; |
| 447 |
+ |
|
| 448 |
+ |
info->integrableObjects[vd]->setVel( aVel ); |
| 449 |
+ |
} |
| 450 |
+ |
} |