1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
|
#include <iostream> |
3 |
|
using namespace std; |
4 |
|
|
33 |
|
double kinetic; |
34 |
|
double amass; |
35 |
|
double aVel[3], aJ[3], I[3][3]; |
36 |
< |
int j, kl; |
36 |
> |
int i, j, k, kl; |
37 |
|
|
38 |
– |
DirectionalAtom *dAtom; |
39 |
– |
|
40 |
– |
int n_atoms; |
38 |
|
double kinetic_global; |
39 |
< |
Atom** atoms; |
43 |
< |
|
39 |
> |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
40 |
|
|
45 |
– |
n_atoms = info->n_atoms; |
46 |
– |
atoms = info->atoms; |
47 |
– |
|
41 |
|
kinetic = 0.0; |
42 |
|
kinetic_global = 0.0; |
50 |
– |
for( kl=0; kl < n_atoms; kl++ ){ |
51 |
– |
|
52 |
– |
atoms[kl]->getVel(aVel); |
53 |
– |
amass = atoms[kl]->getMass(); |
54 |
– |
|
55 |
– |
for (j=0; j < 3; j++) |
56 |
– |
kinetic += amass * aVel[j] * aVel[j]; |
43 |
|
|
44 |
< |
if( atoms[kl]->isDirectional() ){ |
45 |
< |
|
46 |
< |
dAtom = (DirectionalAtom *)atoms[kl]; |
44 |
> |
for (kl=0; kl<integrableObjects.size(); kl++) { |
45 |
> |
integrableObjects[kl]->getVel(aVel); |
46 |
> |
amass = integrableObjects[kl]->getMass(); |
47 |
|
|
48 |
< |
dAtom->getJ( aJ ); |
49 |
< |
dAtom->getI( I ); |
50 |
< |
|
51 |
< |
for (j=0; j<3; j++) |
52 |
< |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
53 |
< |
|
48 |
> |
for(j=0; j<3; j++) |
49 |
> |
kinetic += amass*aVel[j]*aVel[j]; |
50 |
> |
|
51 |
> |
if (integrableObjects[kl]->isDirectional()){ |
52 |
> |
|
53 |
> |
integrableObjects[kl]->getJ( aJ ); |
54 |
> |
integrableObjects[kl]->getI( I ); |
55 |
> |
|
56 |
> |
if (integrableObjects[kl]->isLinear()) { |
57 |
> |
i = integrableObjects[kl]->linearAxis(); |
58 |
> |
j = (i+1)%3; |
59 |
> |
k = (i+2)%3; |
60 |
> |
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
61 |
> |
} else { |
62 |
> |
for (j=0; j<3; j++) |
63 |
> |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
64 |
> |
} |
65 |
|
} |
66 |
|
} |
67 |
|
#ifdef IS_MPI |
101 |
|
potential = potential_local; |
102 |
|
#endif // is_mpi |
103 |
|
|
107 |
– |
#ifdef IS_MPI |
108 |
– |
/* |
109 |
– |
std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
110 |
– |
*/ |
111 |
– |
#endif |
112 |
– |
|
104 |
|
return potential; |
105 |
|
} |
106 |
|
|
114 |
|
|
115 |
|
double Thermo::getTemperature(){ |
116 |
|
|
117 |
< |
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
117 |
> |
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
118 |
|
double temperature; |
119 |
< |
|
119 |
> |
|
120 |
|
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
121 |
|
return temperature; |
122 |
|
} |
123 |
|
|
124 |
< |
double Thermo::getEnthalpy() { |
124 |
> |
double Thermo::getVolume() { |
125 |
|
|
126 |
< |
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
127 |
< |
double u, p, v; |
137 |
< |
double press[3][3]; |
126 |
> |
return info->boxVol; |
127 |
> |
} |
128 |
|
|
129 |
< |
u = this->getTotalE(); |
129 |
> |
double Thermo::getPressure() { |
130 |
|
|
131 |
+ |
// Relies on the calculation of the full molecular pressure tensor |
132 |
+ |
|
133 |
+ |
const double p_convert = 1.63882576e8; |
134 |
+ |
double press[3][3]; |
135 |
+ |
double pressure; |
136 |
+ |
|
137 |
|
this->getPressureTensor(press); |
142 |
– |
p = (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
138 |
|
|
139 |
< |
v = this->getVolume(); |
139 |
> |
pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
140 |
|
|
141 |
< |
return (u + (p*v)/e_convert); |
141 |
> |
return pressure; |
142 |
|
} |
143 |
|
|
144 |
< |
double Thermo::getVolume() { |
144 |
> |
double Thermo::getPressureX() { |
145 |
|
|
146 |
< |
return info->boxVol; |
146 |
> |
// Relies on the calculation of the full molecular pressure tensor |
147 |
> |
|
148 |
> |
const double p_convert = 1.63882576e8; |
149 |
> |
double press[3][3]; |
150 |
> |
double pressureX; |
151 |
> |
|
152 |
> |
this->getPressureTensor(press); |
153 |
> |
|
154 |
> |
pressureX = p_convert * press[0][0]; |
155 |
> |
|
156 |
> |
return pressureX; |
157 |
|
} |
158 |
|
|
159 |
< |
double Thermo::getPressure() { |
159 |
> |
double Thermo::getPressureY() { |
160 |
|
|
161 |
|
// Relies on the calculation of the full molecular pressure tensor |
162 |
|
|
163 |
|
const double p_convert = 1.63882576e8; |
164 |
|
double press[3][3]; |
165 |
< |
double pressure; |
165 |
> |
double pressureY; |
166 |
|
|
167 |
|
this->getPressureTensor(press); |
168 |
|
|
169 |
< |
pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
169 |
> |
pressureY = p_convert * press[1][1]; |
170 |
|
|
171 |
< |
return pressure; |
171 |
> |
return pressureY; |
172 |
|
} |
173 |
|
|
174 |
+ |
double Thermo::getPressureZ() { |
175 |
|
|
176 |
+ |
// Relies on the calculation of the full molecular pressure tensor |
177 |
+ |
|
178 |
+ |
const double p_convert = 1.63882576e8; |
179 |
+ |
double press[3][3]; |
180 |
+ |
double pressureZ; |
181 |
+ |
|
182 |
+ |
this->getPressureTensor(press); |
183 |
+ |
|
184 |
+ |
pressureZ = p_convert * press[2][2]; |
185 |
+ |
|
186 |
+ |
return pressureZ; |
187 |
+ |
} |
188 |
+ |
|
189 |
+ |
|
190 |
|
void Thermo::getPressureTensor(double press[3][3]){ |
191 |
|
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
192 |
|
// routine derived via viral theorem description in: |
247 |
|
|
248 |
|
void Thermo::velocitize() { |
249 |
|
|
230 |
– |
double x,y; |
250 |
|
double aVel[3], aJ[3], I[3][3]; |
251 |
|
int i, j, vr, vd; // velocity randomizer loop counters |
252 |
|
double vdrift[3]; |
267 |
|
n_oriented = info->n_oriented; |
268 |
|
n_constraints = info->n_constraints; |
269 |
|
|
270 |
< |
kebar = kb * temperature * (double)info->ndf / |
271 |
< |
( 2.0 * (double)info->ndfRaw ); |
270 |
> |
kebar = kb * temperature * (double)info->ndfRaw / |
271 |
> |
( 2.0 * (double)info->ndf ); |
272 |
|
|
273 |
|
for(vr = 0; vr < n_atoms; vr++){ |
274 |
|
|
276 |
|
|
277 |
|
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
278 |
|
vbar = sqrt( av2 ); |
279 |
< |
|
261 |
< |
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
262 |
< |
|
279 |
> |
|
280 |
|
// picks random velocities from a gaussian distribution |
281 |
|
// centered on vbar |
282 |
|
|
372 |
|
|
373 |
|
} |
374 |
|
|
375 |
+ |
void Thermo::getCOM(double COM[3]){ |
376 |
+ |
|
377 |
+ |
double mtot, mtot_local; |
378 |
+ |
double aPos[3], amass; |
379 |
+ |
double COM_local[3]; |
380 |
+ |
int i, n_atoms, j; |
381 |
+ |
Atom** atoms; |
382 |
+ |
|
383 |
+ |
// We are very careless here with the distinction between n_atoms and n_local |
384 |
+ |
// We should really fix this before someone pokes an eye out. |
385 |
+ |
|
386 |
+ |
n_atoms = info->n_atoms; |
387 |
+ |
atoms = info->atoms; |
388 |
+ |
|
389 |
+ |
mtot_local = 0.0; |
390 |
+ |
COM_local[0] = 0.0; |
391 |
+ |
COM_local[1] = 0.0; |
392 |
+ |
COM_local[2] = 0.0; |
393 |
+ |
|
394 |
+ |
for(i = 0; i < n_atoms; i++){ |
395 |
+ |
|
396 |
+ |
amass = atoms[i]->getMass(); |
397 |
+ |
atoms[i]->getPos( aPos ); |
398 |
+ |
|
399 |
+ |
for(j = 0; j < 3; j++) |
400 |
+ |
COM_local[j] += aPos[j] * amass; |
401 |
+ |
|
402 |
+ |
mtot_local += amass; |
403 |
+ |
} |
404 |
+ |
|
405 |
+ |
#ifdef IS_MPI |
406 |
+ |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
407 |
+ |
MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
408 |
+ |
#else |
409 |
+ |
mtot = mtot_local; |
410 |
+ |
for(i = 0; i < 3; i++) { |
411 |
+ |
COM[i] = COM_local[i]; |
412 |
+ |
} |
413 |
+ |
#endif |
414 |
+ |
|
415 |
+ |
for (i = 0; i < 3; i++) { |
416 |
+ |
COM[i] = COM[i] / mtot; |
417 |
+ |
} |
418 |
+ |
} |