1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
|
#include <iostream> |
3 |
|
using namespace std; |
4 |
|
|
16 |
|
#include "mpiSimulation.hpp" |
17 |
|
#endif // is_mpi |
18 |
|
|
19 |
– |
|
20 |
– |
#define BASE_SEED 123456789 |
21 |
– |
|
19 |
|
Thermo::Thermo( SimInfo* the_info ) { |
20 |
|
info = the_info; |
21 |
< |
int baseSeed = BASE_SEED; |
21 |
> |
int baseSeed = the_info->getSeed(); |
22 |
|
|
23 |
|
gaussStream = new gaussianSPRNG( baseSeed ); |
24 |
|
} |
35 |
|
double aVel[3], aJ[3], I[3][3]; |
36 |
|
int j, kl; |
37 |
|
|
41 |
– |
DirectionalAtom *dAtom; |
42 |
– |
|
43 |
– |
int n_atoms; |
38 |
|
double kinetic_global; |
39 |
< |
Atom** atoms; |
46 |
< |
|
39 |
> |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
40 |
|
|
48 |
– |
n_atoms = info->n_atoms; |
49 |
– |
atoms = info->atoms; |
50 |
– |
|
41 |
|
kinetic = 0.0; |
42 |
|
kinetic_global = 0.0; |
53 |
– |
for( kl=0; kl < n_atoms; kl++ ){ |
54 |
– |
|
55 |
– |
atoms[kl]->getVel(aVel); |
56 |
– |
amass = atoms[kl]->getMass(); |
57 |
– |
|
58 |
– |
for (j=0; j < 3; j++) |
59 |
– |
kinetic += amass * aVel[j] * aVel[j]; |
43 |
|
|
44 |
< |
if( atoms[kl]->isDirectional() ){ |
45 |
< |
|
46 |
< |
dAtom = (DirectionalAtom *)atoms[kl]; |
44 |
> |
for (kl=0; kl<integrableObjects.size(); kl++) { |
45 |
> |
integrableObjects[kl]->getVel(aVel); |
46 |
> |
amass = integrableObjects[kl]->getMass(); |
47 |
|
|
48 |
< |
dAtom->getJ( aJ ); |
49 |
< |
dAtom->getI( I ); |
50 |
< |
|
48 |
> |
for(j=0; j<3; j++) |
49 |
> |
kinetic += amass*aVel[j]*aVel[j]; |
50 |
> |
|
51 |
> |
if (integrableObjects[kl]->isDirectional()){ |
52 |
> |
|
53 |
> |
integrableObjects[kl]->getJ( aJ ); |
54 |
> |
integrableObjects[kl]->getI( I ); |
55 |
> |
|
56 |
|
for (j=0; j<3; j++) |
57 |
|
kinetic += aJ[j]*aJ[j] / I[j][j]; |
58 |
|
|
95 |
|
potential = potential_local; |
96 |
|
#endif // is_mpi |
97 |
|
|
110 |
– |
#ifdef IS_MPI |
111 |
– |
/* |
112 |
– |
std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
113 |
– |
*/ |
114 |
– |
#endif |
115 |
– |
|
98 |
|
return potential; |
99 |
|
} |
100 |
|
|
108 |
|
|
109 |
|
double Thermo::getTemperature(){ |
110 |
|
|
111 |
< |
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
111 |
> |
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
112 |
|
double temperature; |
113 |
< |
|
113 |
> |
|
114 |
|
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
115 |
|
return temperature; |
116 |
|
} |
117 |
|
|
118 |
< |
double Thermo::getEnthalpy() { |
118 |
> |
double Thermo::getVolume() { |
119 |
|
|
120 |
< |
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
121 |
< |
double u, p, v; |
140 |
< |
double press[3][3]; |
120 |
> |
return info->boxVol; |
121 |
> |
} |
122 |
|
|
123 |
< |
u = this->getTotalE(); |
123 |
> |
double Thermo::getPressure() { |
124 |
|
|
125 |
+ |
// Relies on the calculation of the full molecular pressure tensor |
126 |
+ |
|
127 |
+ |
const double p_convert = 1.63882576e8; |
128 |
+ |
double press[3][3]; |
129 |
+ |
double pressure; |
130 |
+ |
|
131 |
|
this->getPressureTensor(press); |
145 |
– |
p = (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
132 |
|
|
133 |
< |
v = this->getVolume(); |
133 |
> |
pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
134 |
|
|
135 |
< |
return (u + (p*v)/e_convert); |
135 |
> |
return pressure; |
136 |
|
} |
137 |
|
|
138 |
< |
double Thermo::getVolume() { |
138 |
> |
double Thermo::getPressureX() { |
139 |
|
|
140 |
< |
return info->boxVol; |
140 |
> |
// Relies on the calculation of the full molecular pressure tensor |
141 |
> |
|
142 |
> |
const double p_convert = 1.63882576e8; |
143 |
> |
double press[3][3]; |
144 |
> |
double pressureX; |
145 |
> |
|
146 |
> |
this->getPressureTensor(press); |
147 |
> |
|
148 |
> |
pressureX = p_convert * press[0][0]; |
149 |
> |
|
150 |
> |
return pressureX; |
151 |
|
} |
152 |
|
|
153 |
< |
double Thermo::getPressure() { |
153 |
> |
double Thermo::getPressureY() { |
154 |
|
|
155 |
|
// Relies on the calculation of the full molecular pressure tensor |
156 |
|
|
157 |
|
const double p_convert = 1.63882576e8; |
158 |
|
double press[3][3]; |
159 |
< |
double pressure; |
159 |
> |
double pressureY; |
160 |
|
|
161 |
|
this->getPressureTensor(press); |
162 |
|
|
163 |
< |
pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
163 |
> |
pressureY = p_convert * press[1][1]; |
164 |
|
|
165 |
< |
return pressure; |
165 |
> |
return pressureY; |
166 |
|
} |
167 |
|
|
168 |
+ |
double Thermo::getPressureZ() { |
169 |
|
|
170 |
+ |
// Relies on the calculation of the full molecular pressure tensor |
171 |
+ |
|
172 |
+ |
const double p_convert = 1.63882576e8; |
173 |
+ |
double press[3][3]; |
174 |
+ |
double pressureZ; |
175 |
+ |
|
176 |
+ |
this->getPressureTensor(press); |
177 |
+ |
|
178 |
+ |
pressureZ = p_convert * press[2][2]; |
179 |
+ |
|
180 |
+ |
return pressureZ; |
181 |
+ |
} |
182 |
+ |
|
183 |
+ |
|
184 |
|
void Thermo::getPressureTensor(double press[3][3]){ |
185 |
|
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
186 |
|
// routine derived via viral theorem description in: |
241 |
|
|
242 |
|
void Thermo::velocitize() { |
243 |
|
|
233 |
– |
double x,y; |
244 |
|
double aVel[3], aJ[3], I[3][3]; |
245 |
|
int i, j, vr, vd; // velocity randomizer loop counters |
246 |
|
double vdrift[3]; |
261 |
|
n_oriented = info->n_oriented; |
262 |
|
n_constraints = info->n_constraints; |
263 |
|
|
264 |
< |
kebar = kb * temperature * (double)info->ndf / |
265 |
< |
( 2.0 * (double)info->ndfRaw ); |
264 |
> |
kebar = kb * temperature * (double)info->ndfRaw / |
265 |
> |
( 2.0 * (double)info->ndf ); |
266 |
|
|
267 |
|
for(vr = 0; vr < n_atoms; vr++){ |
268 |
|
|
270 |
|
|
271 |
|
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
272 |
|
vbar = sqrt( av2 ); |
273 |
< |
|
264 |
< |
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
265 |
< |
|
273 |
> |
|
274 |
|
// picks random velocities from a gaussian distribution |
275 |
|
// centered on vbar |
276 |
|
|
366 |
|
|
367 |
|
} |
368 |
|
|
369 |
+ |
void Thermo::getCOM(double COM[3]){ |
370 |
+ |
|
371 |
+ |
double mtot, mtot_local; |
372 |
+ |
double aPos[3], amass; |
373 |
+ |
double COM_local[3]; |
374 |
+ |
int i, n_atoms, j; |
375 |
+ |
Atom** atoms; |
376 |
+ |
|
377 |
+ |
// We are very careless here with the distinction between n_atoms and n_local |
378 |
+ |
// We should really fix this before someone pokes an eye out. |
379 |
+ |
|
380 |
+ |
n_atoms = info->n_atoms; |
381 |
+ |
atoms = info->atoms; |
382 |
+ |
|
383 |
+ |
mtot_local = 0.0; |
384 |
+ |
COM_local[0] = 0.0; |
385 |
+ |
COM_local[1] = 0.0; |
386 |
+ |
COM_local[2] = 0.0; |
387 |
+ |
|
388 |
+ |
for(i = 0; i < n_atoms; i++){ |
389 |
+ |
|
390 |
+ |
amass = atoms[i]->getMass(); |
391 |
+ |
atoms[i]->getPos( aPos ); |
392 |
+ |
|
393 |
+ |
for(j = 0; j < 3; j++) |
394 |
+ |
COM_local[j] += aPos[j] * amass; |
395 |
+ |
|
396 |
+ |
mtot_local += amass; |
397 |
+ |
} |
398 |
+ |
|
399 |
+ |
#ifdef IS_MPI |
400 |
+ |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
401 |
+ |
MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
402 |
+ |
#else |
403 |
+ |
mtot = mtot_local; |
404 |
+ |
for(i = 0; i < 3; i++) { |
405 |
+ |
COM[i] = COM_local[i]; |
406 |
+ |
} |
407 |
+ |
#endif |
408 |
+ |
|
409 |
+ |
for (i = 0; i < 3; i++) { |
410 |
+ |
COM[i] = COM[i] / mtot; |
411 |
+ |
} |
412 |
+ |
} |