10 |
|
#include "SRI.hpp" |
11 |
|
#include "Integrator.hpp" |
12 |
|
#include "simError.h" |
13 |
+ |
#include "MatVec3.h" |
14 |
|
|
15 |
|
#ifdef IS_MPI |
16 |
|
#define __C |
17 |
|
#include "mpiSimulation.hpp" |
18 |
|
#endif // is_mpi |
19 |
|
|
20 |
+ |
inline double roundMe( double x ){ |
21 |
+ |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
22 |
+ |
} |
23 |
+ |
|
24 |
|
Thermo::Thermo( SimInfo* the_info ) { |
25 |
|
info = the_info; |
26 |
|
int baseSeed = the_info->getSeed(); |
202 |
|
double molmass, volume; |
203 |
|
double vcom[3]; |
204 |
|
double p_local[9], p_global[9]; |
205 |
< |
int i, j, k, nMols; |
201 |
< |
Molecule* molecules; |
205 |
> |
int i, j, k; |
206 |
|
|
203 |
– |
nMols = info->n_mol; |
204 |
– |
molecules = info->molecules; |
205 |
– |
//tau = info->tau; |
206 |
– |
|
207 |
– |
// use velocities of molecular centers of mass and molecular masses: |
207 |
|
for (i=0; i < 9; i++) { |
208 |
|
p_local[i] = 0.0; |
209 |
|
p_global[i] = 0.0; |
210 |
|
} |
211 |
|
|
212 |
< |
for (i=0; i < nMols; i++) { |
214 |
< |
molmass = molecules[i].getCOMvel(vcom); |
212 |
> |
// use velocities of integrableObjects and their masses: |
213 |
|
|
214 |
+ |
for (i=0; i < info->integrableObjects.size(); i++) { |
215 |
+ |
|
216 |
+ |
molmass = info->integrableObjects[i]->getMass(); |
217 |
+ |
|
218 |
+ |
info->integrableObjects[i]->getVel(vcom); |
219 |
+ |
|
220 |
|
p_local[0] += molmass * (vcom[0] * vcom[0]); |
221 |
|
p_local[1] += molmass * (vcom[0] * vcom[1]); |
222 |
|
p_local[2] += molmass * (vcom[0] * vcom[2]); |
226 |
|
p_local[6] += molmass * (vcom[2] * vcom[0]); |
227 |
|
p_local[7] += molmass * (vcom[2] * vcom[1]); |
228 |
|
p_local[8] += molmass * (vcom[2] * vcom[2]); |
229 |
+ |
|
230 |
|
} |
231 |
|
|
232 |
|
// Get total for entire system from MPI. |
233 |
< |
|
233 |
> |
|
234 |
|
#ifdef IS_MPI |
235 |
|
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
236 |
|
#else |
241 |
|
|
242 |
|
volume = this->getVolume(); |
243 |
|
|
244 |
+ |
|
245 |
+ |
|
246 |
|
for(i = 0; i < 3; i++) { |
247 |
|
for (j = 0; j < 3; j++) { |
248 |
|
k = 3*i + j; |
249 |
|
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
243 |
– |
|
250 |
|
} |
251 |
|
} |
252 |
|
} |
254 |
|
void Thermo::velocitize() { |
255 |
|
|
256 |
|
double aVel[3], aJ[3], I[3][3]; |
257 |
< |
int i, j, vr, vd; // velocity randomizer loop counters |
257 |
> |
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
258 |
|
double vdrift[3]; |
259 |
|
double vbar; |
260 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
261 |
|
double av2; |
262 |
|
double kebar; |
257 |
– |
int n_atoms; |
258 |
– |
Atom** atoms; |
259 |
– |
DirectionalAtom* dAtom; |
263 |
|
double temperature; |
264 |
< |
int n_oriented; |
262 |
< |
int n_constraints; |
264 |
> |
int nobj; |
265 |
|
|
266 |
< |
atoms = info->atoms; |
267 |
< |
n_atoms = info->n_atoms; |
266 |
> |
nobj = info->integrableObjects.size(); |
267 |
> |
|
268 |
|
temperature = info->target_temp; |
267 |
– |
n_oriented = info->n_oriented; |
268 |
– |
n_constraints = info->n_constraints; |
269 |
|
|
270 |
|
kebar = kb * temperature * (double)info->ndfRaw / |
271 |
|
( 2.0 * (double)info->ndf ); |
272 |
|
|
273 |
< |
for(vr = 0; vr < n_atoms; vr++){ |
273 |
> |
for(vr = 0; vr < nobj; vr++){ |
274 |
|
|
275 |
|
// uses equipartition theory to solve for vbar in angstrom/fs |
276 |
|
|
277 |
< |
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
277 |
> |
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
278 |
|
vbar = sqrt( av2 ); |
279 |
|
|
280 |
|
// picks random velocities from a gaussian distribution |
283 |
|
for (j=0; j<3; j++) |
284 |
|
aVel[j] = vbar * gaussStream->getGaussian(); |
285 |
|
|
286 |
< |
atoms[vr]->setVel( aVel ); |
286 |
> |
info->integrableObjects[vr]->setVel( aVel ); |
287 |
> |
|
288 |
> |
if(info->integrableObjects[vr]->isDirectional()){ |
289 |
|
|
290 |
+ |
info->integrableObjects[vr]->getI( I ); |
291 |
+ |
|
292 |
+ |
if (info->integrableObjects[vr]->isLinear()) { |
293 |
+ |
|
294 |
+ |
l= info->integrableObjects[vr]->linearAxis(); |
295 |
+ |
m = (l+1)%3; |
296 |
+ |
n = (l+2)%3; |
297 |
+ |
|
298 |
+ |
aJ[l] = 0.0; |
299 |
+ |
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
300 |
+ |
aJ[m] = vbar * gaussStream->getGaussian(); |
301 |
+ |
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
302 |
+ |
aJ[n] = vbar * gaussStream->getGaussian(); |
303 |
+ |
|
304 |
+ |
} else { |
305 |
+ |
for (j = 0 ; j < 3; j++) { |
306 |
+ |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
307 |
+ |
aJ[j] = vbar * gaussStream->getGaussian(); |
308 |
+ |
} |
309 |
+ |
} // else isLinear |
310 |
+ |
|
311 |
+ |
info->integrableObjects[vr]->setJ( aJ ); |
312 |
+ |
|
313 |
+ |
}//isDirectional |
314 |
+ |
|
315 |
|
} |
316 |
|
|
317 |
|
// Get the Center of Mass drift velocity. |
321 |
|
// Corrects for the center of mass drift. |
322 |
|
// sums all the momentum and divides by total mass. |
323 |
|
|
324 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
324 |
> |
for(vd = 0; vd < nobj; vd++){ |
325 |
|
|
326 |
< |
atoms[vd]->getVel(aVel); |
326 |
> |
info->integrableObjects[vd]->getVel(aVel); |
327 |
|
|
328 |
|
for (j=0; j < 3; j++) |
329 |
|
aVel[j] -= vdrift[j]; |
330 |
|
|
331 |
< |
atoms[vd]->setVel( aVel ); |
331 |
> |
info->integrableObjects[vd]->setVel( aVel ); |
332 |
|
} |
306 |
– |
if( n_oriented ){ |
307 |
– |
|
308 |
– |
for( i=0; i<n_atoms; i++ ){ |
309 |
– |
|
310 |
– |
if( atoms[i]->isDirectional() ){ |
311 |
– |
|
312 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
313 |
– |
dAtom->getI( I ); |
314 |
– |
|
315 |
– |
for (j = 0 ; j < 3; j++) { |
333 |
|
|
317 |
– |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
318 |
– |
aJ[j] = vbar * gaussStream->getGaussian(); |
319 |
– |
|
320 |
– |
} |
321 |
– |
|
322 |
– |
dAtom->setJ( aJ ); |
323 |
– |
|
324 |
– |
} |
325 |
– |
} |
326 |
– |
} |
334 |
|
} |
335 |
|
|
336 |
|
void Thermo::getCOMVel(double vdrift[3]){ |
338 |
|
double mtot, mtot_local; |
339 |
|
double aVel[3], amass; |
340 |
|
double vdrift_local[3]; |
341 |
< |
int vd, n_atoms, j; |
342 |
< |
Atom** atoms; |
341 |
> |
int vd, j; |
342 |
> |
int nobj; |
343 |
|
|
344 |
< |
// We are very careless here with the distinction between n_atoms and n_local |
338 |
< |
// We should really fix this before someone pokes an eye out. |
344 |
> |
nobj = info->integrableObjects.size(); |
345 |
|
|
340 |
– |
n_atoms = info->n_atoms; |
341 |
– |
atoms = info->atoms; |
342 |
– |
|
346 |
|
mtot_local = 0.0; |
347 |
|
vdrift_local[0] = 0.0; |
348 |
|
vdrift_local[1] = 0.0; |
349 |
|
vdrift_local[2] = 0.0; |
350 |
|
|
351 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
351 |
> |
for(vd = 0; vd < nobj; vd++){ |
352 |
|
|
353 |
< |
amass = atoms[vd]->getMass(); |
354 |
< |
atoms[vd]->getVel( aVel ); |
353 |
> |
amass = info->integrableObjects[vd]->getMass(); |
354 |
> |
info->integrableObjects[vd]->getVel( aVel ); |
355 |
|
|
356 |
|
for(j = 0; j < 3; j++) |
357 |
|
vdrift_local[j] += aVel[j] * amass; |
380 |
|
double mtot, mtot_local; |
381 |
|
double aPos[3], amass; |
382 |
|
double COM_local[3]; |
383 |
< |
int i, n_atoms, j; |
384 |
< |
Atom** atoms; |
383 |
> |
int i, j; |
384 |
> |
int nobj; |
385 |
|
|
383 |
– |
// We are very careless here with the distinction between n_atoms and n_local |
384 |
– |
// We should really fix this before someone pokes an eye out. |
385 |
– |
|
386 |
– |
n_atoms = info->n_atoms; |
387 |
– |
atoms = info->atoms; |
388 |
– |
|
386 |
|
mtot_local = 0.0; |
387 |
|
COM_local[0] = 0.0; |
388 |
|
COM_local[1] = 0.0; |
389 |
|
COM_local[2] = 0.0; |
390 |
< |
|
391 |
< |
for(i = 0; i < n_atoms; i++){ |
390 |
> |
|
391 |
> |
nobj = info->integrableObjects.size(); |
392 |
> |
for(i = 0; i < nobj; i++){ |
393 |
|
|
394 |
< |
amass = atoms[i]->getMass(); |
395 |
< |
atoms[i]->getPos( aPos ); |
394 |
> |
amass = info->integrableObjects[i]->getMass(); |
395 |
> |
info->integrableObjects[i]->getPos( aPos ); |
396 |
|
|
397 |
|
for(j = 0; j < 3; j++) |
398 |
|
COM_local[j] += aPos[j] * amass; |
414 |
|
COM[i] = COM[i] / mtot; |
415 |
|
} |
416 |
|
} |
417 |
+ |
|
418 |
+ |
void Thermo::removeCOMdrift() { |
419 |
+ |
double vdrift[3], aVel[3]; |
420 |
+ |
int vd, j, nobj; |
421 |
+ |
|
422 |
+ |
nobj = info->integrableObjects.size(); |
423 |
+ |
|
424 |
+ |
// Get the Center of Mass drift velocity. |
425 |
+ |
|
426 |
+ |
getCOMVel(vdrift); |
427 |
+ |
|
428 |
+ |
// Corrects for the center of mass drift. |
429 |
+ |
// sums all the momentum and divides by total mass. |
430 |
+ |
|
431 |
+ |
for(vd = 0; vd < nobj; vd++){ |
432 |
+ |
|
433 |
+ |
info->integrableObjects[vd]->getVel(aVel); |
434 |
+ |
|
435 |
+ |
for (j=0; j < 3; j++) |
436 |
+ |
aVel[j] -= vdrift[j]; |
437 |
+ |
|
438 |
+ |
info->integrableObjects[vd]->setVel( aVel ); |
439 |
+ |
} |
440 |
+ |
} |