59 |
|
k = (i+2)%3; |
60 |
|
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
61 |
|
} else { |
62 |
< |
for (j=0; j<3; j++) |
63 |
< |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
62 |
> |
for (j=0; j<3; j++) |
63 |
> |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
64 |
|
} |
65 |
< |
} |
65 |
> |
} |
66 |
|
} |
67 |
|
#ifdef IS_MPI |
68 |
|
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
69 |
|
MPI_SUM, MPI_COMM_WORLD); |
70 |
|
kinetic = kinetic_global; |
71 |
|
#endif //is_mpi |
72 |
< |
|
72 |
> |
|
73 |
|
kinetic = kinetic * 0.5 / e_convert; |
74 |
|
|
75 |
|
return kinetic; |
248 |
|
void Thermo::velocitize() { |
249 |
|
|
250 |
|
double aVel[3], aJ[3], I[3][3]; |
251 |
< |
int i, j, vr, vd; // velocity randomizer loop counters |
251 |
> |
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
252 |
|
double vdrift[3]; |
253 |
|
double vbar; |
254 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
255 |
|
double av2; |
256 |
|
double kebar; |
257 |
< |
int n_atoms; |
258 |
< |
Atom** atoms; |
259 |
< |
DirectionalAtom* dAtom; |
260 |
< |
double temperature; |
261 |
< |
int n_oriented; |
262 |
< |
int n_constraints; |
257 |
> |
double temperature; |
258 |
> |
int nobj; |
259 |
|
|
260 |
< |
atoms = info->atoms; |
261 |
< |
n_atoms = info->n_atoms; |
260 |
> |
nobj = info->integrableObjects.size(); |
261 |
> |
|
262 |
|
temperature = info->target_temp; |
267 |
– |
n_oriented = info->n_oriented; |
268 |
– |
n_constraints = info->n_constraints; |
263 |
|
|
264 |
|
kebar = kb * temperature * (double)info->ndfRaw / |
265 |
|
( 2.0 * (double)info->ndf ); |
266 |
|
|
267 |
< |
for(vr = 0; vr < n_atoms; vr++){ |
267 |
> |
for(vr = 0; vr < nobj; vr++){ |
268 |
|
|
269 |
|
// uses equipartition theory to solve for vbar in angstrom/fs |
270 |
|
|
271 |
< |
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
271 |
> |
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
272 |
|
vbar = sqrt( av2 ); |
273 |
|
|
274 |
|
// picks random velocities from a gaussian distribution |
277 |
|
for (j=0; j<3; j++) |
278 |
|
aVel[j] = vbar * gaussStream->getGaussian(); |
279 |
|
|
280 |
< |
atoms[vr]->setVel( aVel ); |
280 |
> |
info->integrableObjects[vr]->setVel( aVel ); |
281 |
> |
|
282 |
> |
if(info->integrableObjects[vr]->isDirectional()){ |
283 |
|
|
284 |
+ |
info->integrableObjects[vr]->getI( I ); |
285 |
+ |
|
286 |
+ |
if (info->integrableObjects[vr]->isLinear()) { |
287 |
+ |
|
288 |
+ |
l= info->integrableObjects[vr]->linearAxis(); |
289 |
+ |
m = (l+1)%3; |
290 |
+ |
n = (l+2)%3; |
291 |
+ |
|
292 |
+ |
aJ[l] = 0.0; |
293 |
+ |
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
294 |
+ |
aJ[m] = vbar * gaussStream->getGaussian(); |
295 |
+ |
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
296 |
+ |
aJ[n] = vbar * gaussStream->getGaussian(); |
297 |
+ |
|
298 |
+ |
} else { |
299 |
+ |
for (j = 0 ; j < 3; j++) { |
300 |
+ |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
301 |
+ |
aJ[j] = vbar * gaussStream->getGaussian(); |
302 |
+ |
} |
303 |
+ |
} // else isLinear |
304 |
+ |
|
305 |
+ |
info->integrableObjects[vr]->setJ( aJ ); |
306 |
+ |
|
307 |
+ |
}//isDirectional |
308 |
+ |
|
309 |
|
} |
310 |
|
|
311 |
|
// Get the Center of Mass drift velocity. |
315 |
|
// Corrects for the center of mass drift. |
316 |
|
// sums all the momentum and divides by total mass. |
317 |
|
|
318 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
318 |
> |
for(vd = 0; vd < nobj; vd++){ |
319 |
|
|
320 |
< |
atoms[vd]->getVel(aVel); |
320 |
> |
info->integrableObjects[vd]->getVel(aVel); |
321 |
|
|
322 |
|
for (j=0; j < 3; j++) |
323 |
|
aVel[j] -= vdrift[j]; |
324 |
|
|
325 |
< |
atoms[vd]->setVel( aVel ); |
325 |
> |
info->integrableObjects[vd]->setVel( aVel ); |
326 |
|
} |
306 |
– |
if( n_oriented ){ |
307 |
– |
|
308 |
– |
for( i=0; i<n_atoms; i++ ){ |
309 |
– |
|
310 |
– |
if( atoms[i]->isDirectional() ){ |
311 |
– |
|
312 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
313 |
– |
dAtom->getI( I ); |
314 |
– |
|
315 |
– |
for (j = 0 ; j < 3; j++) { |
316 |
– |
|
317 |
– |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
318 |
– |
aJ[j] = vbar * gaussStream->getGaussian(); |
327 |
|
|
320 |
– |
} |
321 |
– |
|
322 |
– |
dAtom->setJ( aJ ); |
323 |
– |
|
324 |
– |
} |
325 |
– |
} |
326 |
– |
} |
328 |
|
} |
329 |
|
|
330 |
|
void Thermo::getCOMVel(double vdrift[3]){ |
332 |
|
double mtot, mtot_local; |
333 |
|
double aVel[3], amass; |
334 |
|
double vdrift_local[3]; |
335 |
< |
int vd, n_atoms, j; |
336 |
< |
Atom** atoms; |
335 |
> |
int vd, j; |
336 |
> |
int nobj; |
337 |
|
|
338 |
< |
// We are very careless here with the distinction between n_atoms and n_local |
338 |
< |
// We should really fix this before someone pokes an eye out. |
338 |
> |
nobj = info->integrableObjects.size(); |
339 |
|
|
340 |
– |
n_atoms = info->n_atoms; |
341 |
– |
atoms = info->atoms; |
342 |
– |
|
340 |
|
mtot_local = 0.0; |
341 |
|
vdrift_local[0] = 0.0; |
342 |
|
vdrift_local[1] = 0.0; |
343 |
|
vdrift_local[2] = 0.0; |
344 |
|
|
345 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
345 |
> |
for(vd = 0; vd < nobj; vd++){ |
346 |
|
|
347 |
< |
amass = atoms[vd]->getMass(); |
348 |
< |
atoms[vd]->getVel( aVel ); |
347 |
> |
amass = info->integrableObjects[vd]->getMass(); |
348 |
> |
info->integrableObjects[vd]->getVel( aVel ); |
349 |
|
|
350 |
|
for(j = 0; j < 3; j++) |
351 |
|
vdrift_local[j] += aVel[j] * amass; |
374 |
|
double mtot, mtot_local; |
375 |
|
double aPos[3], amass; |
376 |
|
double COM_local[3]; |
377 |
< |
int i, n_atoms, j; |
378 |
< |
Atom** atoms; |
377 |
> |
int i, j; |
378 |
> |
int nobj; |
379 |
|
|
383 |
– |
// We are very careless here with the distinction between n_atoms and n_local |
384 |
– |
// We should really fix this before someone pokes an eye out. |
385 |
– |
|
386 |
– |
n_atoms = info->n_atoms; |
387 |
– |
atoms = info->atoms; |
388 |
– |
|
380 |
|
mtot_local = 0.0; |
381 |
|
COM_local[0] = 0.0; |
382 |
|
COM_local[1] = 0.0; |
383 |
|
COM_local[2] = 0.0; |
384 |
< |
|
385 |
< |
for(i = 0; i < n_atoms; i++){ |
384 |
> |
|
385 |
> |
nobj = info->integrableObjects.size(); |
386 |
> |
for(i = 0; i < nobj; i++){ |
387 |
|
|
388 |
< |
amass = atoms[i]->getMass(); |
389 |
< |
atoms[i]->getPos( aPos ); |
388 |
> |
amass = info->integrableObjects[i]->getMass(); |
389 |
> |
info->integrableObjects[i]->getPos( aPos ); |
390 |
|
|
391 |
|
for(j = 0; j < 3; j++) |
392 |
|
COM_local[j] += aPos[j] * amass; |
408 |
|
COM[i] = COM[i] / mtot; |
409 |
|
} |
410 |
|
} |
411 |
+ |
|
412 |
+ |
void Thermo::removeCOMdrift() { |
413 |
+ |
double vdrift[3], aVel[3]; |
414 |
+ |
int vd, j, nobj; |
415 |
+ |
|
416 |
+ |
nobj = info->integrableObjects.size(); |
417 |
+ |
|
418 |
+ |
// Get the Center of Mass drift velocity. |
419 |
+ |
|
420 |
+ |
getCOMVel(vdrift); |
421 |
+ |
|
422 |
+ |
// Corrects for the center of mass drift. |
423 |
+ |
// sums all the momentum and divides by total mass. |
424 |
+ |
|
425 |
+ |
for(vd = 0; vd < nobj; vd++){ |
426 |
+ |
|
427 |
+ |
info->integrableObjects[vd]->getVel(aVel); |
428 |
+ |
|
429 |
+ |
for (j=0; j < 3; j++) |
430 |
+ |
aVel[j] -= vdrift[j]; |
431 |
+ |
|
432 |
+ |
info->integrableObjects[vd]->setVel( aVel ); |
433 |
+ |
} |
434 |
+ |
} |