| 1 | #include <math.h> | 
| 2 | #include <iostream> | 
| 3 | using namespace std; | 
| 4 |  | 
| 5 | #ifdef IS_MPI | 
| 6 | #include <mpi.h> | 
| 7 | #endif //is_mpi | 
| 8 |  | 
| 9 | #include "Thermo.hpp" | 
| 10 | #include "SRI.hpp" | 
| 11 | #include "Integrator.hpp" | 
| 12 | #include "simError.h" | 
| 13 | #include "MatVec3.h" | 
| 14 | #include "ConstraintManager.hpp" | 
| 15 | #include "Mat3x3d.hpp" | 
| 16 |  | 
| 17 | #ifdef IS_MPI | 
| 18 | #define __C | 
| 19 | #include "mpiSimulation.hpp" | 
| 20 | #endif // is_mpi | 
| 21 |  | 
| 22 | inline double roundMe( double x ){ | 
| 23 | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 24 | } | 
| 25 |  | 
| 26 | Thermo::Thermo( SimInfo* the_info ) { | 
| 27 | info = the_info; | 
| 28 | int baseSeed = the_info->getSeed(); | 
| 29 |  | 
| 30 | gaussStream = new gaussianSPRNG( baseSeed ); | 
| 31 |  | 
| 32 | cpIter = info->consMan->createPairIterator(); | 
| 33 | } | 
| 34 |  | 
| 35 | Thermo::~Thermo(){ | 
| 36 | delete gaussStream; | 
| 37 | delete cpIter; | 
| 38 | } | 
| 39 |  | 
| 40 | double Thermo::getKinetic(){ | 
| 41 |  | 
| 42 | const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 43 | double kinetic; | 
| 44 | double amass; | 
| 45 | double aVel[3], aJ[3], I[3][3]; | 
| 46 | int i, j, k, kl; | 
| 47 |  | 
| 48 | double kinetic_global; | 
| 49 | vector<StuntDouble *> integrableObjects = info->integrableObjects; | 
| 50 |  | 
| 51 | kinetic = 0.0; | 
| 52 | kinetic_global = 0.0; | 
| 53 |  | 
| 54 | for (kl=0; kl<integrableObjects.size(); kl++) { | 
| 55 | integrableObjects[kl]->getVel(aVel); | 
| 56 | amass = integrableObjects[kl]->getMass(); | 
| 57 |  | 
| 58 | for(j=0; j<3; j++) | 
| 59 | kinetic += amass*aVel[j]*aVel[j]; | 
| 60 |  | 
| 61 | if (integrableObjects[kl]->isDirectional()){ | 
| 62 |  | 
| 63 | integrableObjects[kl]->getJ( aJ ); | 
| 64 | integrableObjects[kl]->getI( I ); | 
| 65 |  | 
| 66 | if (integrableObjects[kl]->isLinear()) { | 
| 67 | i = integrableObjects[kl]->linearAxis(); | 
| 68 | j = (i+1)%3; | 
| 69 | k = (i+2)%3; | 
| 70 | kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; | 
| 71 | } else { | 
| 72 | for (j=0; j<3; j++) | 
| 73 | kinetic += aJ[j]*aJ[j] / I[j][j]; | 
| 74 | } | 
| 75 | } | 
| 76 | } | 
| 77 | #ifdef IS_MPI | 
| 78 | MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, | 
| 79 | MPI_SUM, MPI_COMM_WORLD); | 
| 80 | kinetic = kinetic_global; | 
| 81 | #endif //is_mpi | 
| 82 |  | 
| 83 | kinetic = kinetic * 0.5 / e_convert; | 
| 84 |  | 
| 85 | return kinetic; | 
| 86 | } | 
| 87 |  | 
| 88 | double Thermo::getPotential(){ | 
| 89 |  | 
| 90 | double potential_local; | 
| 91 | double potential; | 
| 92 | int el, nSRI; | 
| 93 | Molecule* molecules; | 
| 94 |  | 
| 95 | molecules = info->molecules; | 
| 96 | nSRI = info->n_SRI; | 
| 97 |  | 
| 98 | potential_local = 0.0; | 
| 99 | potential = 0.0; | 
| 100 | potential_local += info->lrPot; | 
| 101 |  | 
| 102 | for( el=0; el<info->n_mol; el++ ){ | 
| 103 | potential_local += molecules[el].getPotential(); | 
| 104 | } | 
| 105 |  | 
| 106 | // Get total potential for entire system from MPI. | 
| 107 | #ifdef IS_MPI | 
| 108 | MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, | 
| 109 | MPI_SUM, MPI_COMM_WORLD); | 
| 110 | #else | 
| 111 | potential = potential_local; | 
| 112 | #endif // is_mpi | 
| 113 |  | 
| 114 | return potential; | 
| 115 | } | 
| 116 |  | 
| 117 | double Thermo::getTotalE(){ | 
| 118 |  | 
| 119 | double total; | 
| 120 |  | 
| 121 | total = this->getKinetic() + this->getPotential(); | 
| 122 | return total; | 
| 123 | } | 
| 124 |  | 
| 125 | double Thermo::getTemperature(){ | 
| 126 |  | 
| 127 | const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) | 
| 128 | double temperature; | 
| 129 |  | 
| 130 | temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); | 
| 131 | return temperature; | 
| 132 | } | 
| 133 |  | 
| 134 | double Thermo::getVolume() { | 
| 135 |  | 
| 136 | return info->boxVol; | 
| 137 | } | 
| 138 |  | 
| 139 | double Thermo::getPressure() { | 
| 140 |  | 
| 141 | // Relies on the calculation of the full molecular pressure tensor | 
| 142 |  | 
| 143 | const double p_convert = 1.63882576e8; | 
| 144 | double press[3][3]; | 
| 145 | double pressure; | 
| 146 |  | 
| 147 | this->getPressureTensor(press); | 
| 148 |  | 
| 149 | pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 150 |  | 
| 151 | return pressure; | 
| 152 | } | 
| 153 |  | 
| 154 | double Thermo::getPressureX() { | 
| 155 |  | 
| 156 | // Relies on the calculation of the full molecular pressure tensor | 
| 157 |  | 
| 158 | const double p_convert = 1.63882576e8; | 
| 159 | double press[3][3]; | 
| 160 | double pressureX; | 
| 161 |  | 
| 162 | this->getPressureTensor(press); | 
| 163 |  | 
| 164 | pressureX = p_convert * press[0][0]; | 
| 165 |  | 
| 166 | return pressureX; | 
| 167 | } | 
| 168 |  | 
| 169 | double Thermo::getPressureY() { | 
| 170 |  | 
| 171 | // Relies on the calculation of the full molecular pressure tensor | 
| 172 |  | 
| 173 | const double p_convert = 1.63882576e8; | 
| 174 | double press[3][3]; | 
| 175 | double pressureY; | 
| 176 |  | 
| 177 | this->getPressureTensor(press); | 
| 178 |  | 
| 179 | pressureY = p_convert * press[1][1]; | 
| 180 |  | 
| 181 | return pressureY; | 
| 182 | } | 
| 183 |  | 
| 184 | double Thermo::getPressureZ() { | 
| 185 |  | 
| 186 | // Relies on the calculation of the full molecular pressure tensor | 
| 187 |  | 
| 188 | const double p_convert = 1.63882576e8; | 
| 189 | double press[3][3]; | 
| 190 | double pressureZ; | 
| 191 |  | 
| 192 | this->getPressureTensor(press); | 
| 193 |  | 
| 194 | pressureZ = p_convert * press[2][2]; | 
| 195 |  | 
| 196 | return pressureZ; | 
| 197 | } | 
| 198 |  | 
| 199 |  | 
| 200 | void Thermo::getPressureTensor(double press[3][3]){ | 
| 201 | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 202 | // routine derived via viral theorem description in: | 
| 203 | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 204 |  | 
| 205 | const double e_convert = 4.184e-4; | 
| 206 |  | 
| 207 | double molmass, volume; | 
| 208 | double vcom[3]; | 
| 209 | double p_local[9], p_global[9]; | 
| 210 | int i, j, k; | 
| 211 |  | 
| 212 | for (i=0; i < 9; i++) { | 
| 213 | p_local[i] = 0.0; | 
| 214 | p_global[i] = 0.0; | 
| 215 | } | 
| 216 |  | 
| 217 | // use velocities of integrableObjects and their masses: | 
| 218 |  | 
| 219 | for (i=0; i < info->integrableObjects.size(); i++) { | 
| 220 |  | 
| 221 | molmass = info->integrableObjects[i]->getMass(); | 
| 222 |  | 
| 223 | info->integrableObjects[i]->getVel(vcom); | 
| 224 |  | 
| 225 | p_local[0] += molmass * (vcom[0] * vcom[0]); | 
| 226 | p_local[1] += molmass * (vcom[0] * vcom[1]); | 
| 227 | p_local[2] += molmass * (vcom[0] * vcom[2]); | 
| 228 | p_local[3] += molmass * (vcom[1] * vcom[0]); | 
| 229 | p_local[4] += molmass * (vcom[1] * vcom[1]); | 
| 230 | p_local[5] += molmass * (vcom[1] * vcom[2]); | 
| 231 | p_local[6] += molmass * (vcom[2] * vcom[0]); | 
| 232 | p_local[7] += molmass * (vcom[2] * vcom[1]); | 
| 233 | p_local[8] += molmass * (vcom[2] * vcom[2]); | 
| 234 |  | 
| 235 | } | 
| 236 |  | 
| 237 | // Get total for entire system from MPI. | 
| 238 |  | 
| 239 | #ifdef IS_MPI | 
| 240 | MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 241 | #else | 
| 242 | for (i=0; i<9; i++) { | 
| 243 | p_global[i] = p_local[i]; | 
| 244 | } | 
| 245 | #endif // is_mpi | 
| 246 |  | 
| 247 | volume = this->getVolume(); | 
| 248 |  | 
| 249 |  | 
| 250 |  | 
| 251 | for(i = 0; i < 3; i++) { | 
| 252 | for (j = 0; j < 3; j++) { | 
| 253 | k = 3*i + j; | 
| 254 | press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; | 
| 255 | } | 
| 256 | } | 
| 257 | } | 
| 258 |  | 
| 259 | void Thermo::velocitize() { | 
| 260 |  | 
| 261 | double aVel[3], aJ[3], I[3][3]; | 
| 262 | int i, j, l, m, n, vr, vd; // velocity randomizer loop counters | 
| 263 | double vdrift[3]; | 
| 264 | double vbar; | 
| 265 | const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 266 | double av2; | 
| 267 | double kebar; | 
| 268 | double temperature; | 
| 269 | int nobj; | 
| 270 |  | 
| 271 | nobj = info->integrableObjects.size(); | 
| 272 |  | 
| 273 | temperature   = info->target_temp; | 
| 274 |  | 
| 275 | kebar = kb * temperature * (double)info->ndfRaw / | 
| 276 | ( 2.0 * (double)info->ndf ); | 
| 277 |  | 
| 278 | for(vr = 0; vr < nobj; vr++){ | 
| 279 |  | 
| 280 | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 281 |  | 
| 282 | av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); | 
| 283 | vbar = sqrt( av2 ); | 
| 284 |  | 
| 285 | // picks random velocities from a gaussian distribution | 
| 286 | // centered on vbar | 
| 287 |  | 
| 288 | for (j=0; j<3; j++) | 
| 289 | aVel[j] = vbar * gaussStream->getGaussian(); | 
| 290 |  | 
| 291 | info->integrableObjects[vr]->setVel( aVel ); | 
| 292 |  | 
| 293 | if(info->integrableObjects[vr]->isDirectional()){ | 
| 294 |  | 
| 295 | info->integrableObjects[vr]->getI( I ); | 
| 296 |  | 
| 297 | if (info->integrableObjects[vr]->isLinear()) { | 
| 298 |  | 
| 299 | l= info->integrableObjects[vr]->linearAxis(); | 
| 300 | m = (l+1)%3; | 
| 301 | n = (l+2)%3; | 
| 302 |  | 
| 303 | aJ[l] = 0.0; | 
| 304 | vbar = sqrt( 2.0 * kebar * I[m][m] ); | 
| 305 | aJ[m] = vbar * gaussStream->getGaussian(); | 
| 306 | vbar = sqrt( 2.0 * kebar * I[n][n] ); | 
| 307 | aJ[n] = vbar * gaussStream->getGaussian(); | 
| 308 |  | 
| 309 | } else { | 
| 310 | for (j = 0 ; j < 3; j++) { | 
| 311 | vbar = sqrt( 2.0 * kebar * I[j][j] ); | 
| 312 | aJ[j] = vbar * gaussStream->getGaussian(); | 
| 313 | } | 
| 314 | } // else isLinear | 
| 315 |  | 
| 316 | info->integrableObjects[vr]->setJ( aJ ); | 
| 317 |  | 
| 318 | }//isDirectional | 
| 319 |  | 
| 320 | } | 
| 321 |  | 
| 322 | // Get the Center of Mass drift velocity. | 
| 323 |  | 
| 324 | getCOMVel(vdrift); | 
| 325 |  | 
| 326 | //  Corrects for the center of mass drift. | 
| 327 | // sums all the momentum and divides by total mass. | 
| 328 |  | 
| 329 | for(vd = 0; vd < nobj; vd++){ | 
| 330 |  | 
| 331 | info->integrableObjects[vd]->getVel(aVel); | 
| 332 |  | 
| 333 | for (j=0; j < 3; j++) | 
| 334 | aVel[j] -= vdrift[j]; | 
| 335 |  | 
| 336 | info->integrableObjects[vd]->setVel( aVel ); | 
| 337 | } | 
| 338 |  | 
| 339 | } | 
| 340 |  | 
| 341 | void Thermo::getCOMVel(double vdrift[3]){ | 
| 342 |  | 
| 343 | double mtot, mtot_local; | 
| 344 | double aVel[3], amass; | 
| 345 | double vdrift_local[3]; | 
| 346 | int vd, j; | 
| 347 | int nobj; | 
| 348 |  | 
| 349 | nobj   = info->integrableObjects.size(); | 
| 350 |  | 
| 351 | mtot_local = 0.0; | 
| 352 | vdrift_local[0] = 0.0; | 
| 353 | vdrift_local[1] = 0.0; | 
| 354 | vdrift_local[2] = 0.0; | 
| 355 |  | 
| 356 | for(vd = 0; vd < nobj; vd++){ | 
| 357 |  | 
| 358 | amass = info->integrableObjects[vd]->getMass(); | 
| 359 | info->integrableObjects[vd]->getVel( aVel ); | 
| 360 |  | 
| 361 | for(j = 0; j < 3; j++) | 
| 362 | vdrift_local[j] += aVel[j] * amass; | 
| 363 |  | 
| 364 | mtot_local += amass; | 
| 365 | } | 
| 366 |  | 
| 367 | #ifdef IS_MPI | 
| 368 | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 369 | MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 370 | #else | 
| 371 | mtot = mtot_local; | 
| 372 | for(vd = 0; vd < 3; vd++) { | 
| 373 | vdrift[vd] = vdrift_local[vd]; | 
| 374 | } | 
| 375 | #endif | 
| 376 |  | 
| 377 | for (vd = 0; vd < 3; vd++) { | 
| 378 | vdrift[vd] = vdrift[vd] / mtot; | 
| 379 | } | 
| 380 |  | 
| 381 | } | 
| 382 |  | 
| 383 | void Thermo::getCOM(double COM[3]){ | 
| 384 |  | 
| 385 | double mtot, mtot_local; | 
| 386 | double aPos[3], amass; | 
| 387 | double COM_local[3]; | 
| 388 | int i, j; | 
| 389 | int nobj; | 
| 390 |  | 
| 391 | mtot_local = 0.0; | 
| 392 | COM_local[0] = 0.0; | 
| 393 | COM_local[1] = 0.0; | 
| 394 | COM_local[2] = 0.0; | 
| 395 |  | 
| 396 | nobj = info->integrableObjects.size(); | 
| 397 | for(i = 0; i < nobj; i++){ | 
| 398 |  | 
| 399 | amass = info->integrableObjects[i]->getMass(); | 
| 400 | info->integrableObjects[i]->getPos( aPos ); | 
| 401 |  | 
| 402 | for(j = 0; j < 3; j++) | 
| 403 | COM_local[j] += aPos[j] * amass; | 
| 404 |  | 
| 405 | mtot_local += amass; | 
| 406 | } | 
| 407 |  | 
| 408 | #ifdef IS_MPI | 
| 409 | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 410 | MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 411 | #else | 
| 412 | mtot = mtot_local; | 
| 413 | for(i = 0; i < 3; i++) { | 
| 414 | COM[i] = COM_local[i]; | 
| 415 | } | 
| 416 | #endif | 
| 417 |  | 
| 418 | for (i = 0; i < 3; i++) { | 
| 419 | COM[i] = COM[i] / mtot; | 
| 420 | } | 
| 421 | } | 
| 422 |  | 
| 423 | void Thermo::removeCOMdrift() { | 
| 424 | double vdrift[3], aVel[3]; | 
| 425 | int vd, j, nobj; | 
| 426 |  | 
| 427 | nobj = info->integrableObjects.size(); | 
| 428 |  | 
| 429 | // Get the Center of Mass drift velocity. | 
| 430 |  | 
| 431 | getCOMVel(vdrift); | 
| 432 |  | 
| 433 | //  Corrects for the center of mass drift. | 
| 434 | // sums all the momentum and divides by total mass. | 
| 435 |  | 
| 436 | for(vd = 0; vd < nobj; vd++){ | 
| 437 |  | 
| 438 | info->integrableObjects[vd]->getVel(aVel); | 
| 439 |  | 
| 440 | for (j=0; j < 3; j++) | 
| 441 | aVel[j] -= vdrift[j]; | 
| 442 |  | 
| 443 | info->integrableObjects[vd]->setVel( aVel ); | 
| 444 | } | 
| 445 | } | 
| 446 |  | 
| 447 | void Thermo::removeAngularMomentum(){ | 
| 448 | Vector3d vcom; | 
| 449 | Vector3d qcom; | 
| 450 | Vector3d pos; | 
| 451 | Vector3d vel; | 
| 452 | double mass; | 
| 453 | double xx; | 
| 454 | double yy; | 
| 455 | double zz; | 
| 456 | double xy; | 
| 457 | double xz; | 
| 458 | double yz; | 
| 459 | Vector3d localAngMom; | 
| 460 | Vector3d angMom; | 
| 461 | Vector3d omega; | 
| 462 | vector<StuntDouble *> integrableObjects; | 
| 463 | double localInertiaVec[9]; | 
| 464 | double inertiaVec[9]; | 
| 465 | vector<Vector3d> qMinusQCom; | 
| 466 | vector<Vector3d> vMinusVCom; | 
| 467 | Mat3x3d inertiaMat; | 
| 468 | Mat3x3d inverseInertiaMat; | 
| 469 |  | 
| 470 | integrableObjects = info->integrableObjects; | 
| 471 | qMinusQCom.resize(integrableObjects.size()); | 
| 472 | vMinusVCom.resize(integrableObjects.size()); | 
| 473 |  | 
| 474 | getCOM(qcom.vec); | 
| 475 | getCOMVel(vcom.vec); | 
| 476 |  | 
| 477 | //initialize components for inertia tensor | 
| 478 | xx = 0.0; | 
| 479 | yy = 0.0; | 
| 480 | zz = 0.0; | 
| 481 | xy = 0.0; | 
| 482 | xz = 0.0; | 
| 483 | yz = 0.0; | 
| 484 |  | 
| 485 | //build components of Inertia tensor | 
| 486 | // | 
| 487 | //       [  Ixx -Ixy  -Ixz ] | 
| 488 | //   J = | -Iyx  Iyy  -Iyz | | 
| 489 | //       [ -Izx -Iyz   Izz ] | 
| 490 | //See Fowles and Cassidy Chapter 9 or Goldstein Chapter 5 | 
| 491 | for(size_t i = 0; i < integrableObjects.size(); i++){ | 
| 492 | integrableObjects[i]->getPos(pos.vec); | 
| 493 | integrableObjects[i]->getVel(vel.vec); | 
| 494 | mass = integrableObjects[i]->getMass(); | 
| 495 |  | 
| 496 | qMinusQCom[i] = pos - qcom; | 
| 497 | info->wrapVector(qMinusQCom[i].vec); | 
| 498 |  | 
| 499 | vMinusVCom[i] = vel - vcom; | 
| 500 |  | 
| 501 | //compute moment of inertia coefficents | 
| 502 | xx += qMinusQCom[i].x * qMinusQCom[i].x * mass; | 
| 503 | yy += qMinusQCom[i].y * qMinusQCom[i].y * mass; | 
| 504 | zz += qMinusQCom[i].z * qMinusQCom[i].z * mass; | 
| 505 |  | 
| 506 | // compute products of inertia | 
| 507 | xy += qMinusQCom[i].x * qMinusQCom[i].y * mass; | 
| 508 | xz += qMinusQCom[i].x * qMinusQCom[i].z * mass; | 
| 509 | yz += qMinusQCom[i].y * qMinusQCom[i].z * mass; | 
| 510 |  | 
| 511 | localAngMom += crossProduct(qMinusQCom[i] , vMinusVCom[i] ) * mass; | 
| 512 |  | 
| 513 | } | 
| 514 |  | 
| 515 | localInertiaVec[0] =yy+zz; | 
| 516 | localInertiaVec[1] = -xy; | 
| 517 | localInertiaVec[2] = -xz; | 
| 518 | localInertiaVec[3] = -xy; | 
| 519 | localInertiaVec[4] = xx+zz; | 
| 520 | localInertiaVec[5] = -yz; | 
| 521 | localInertiaVec[6] = -xz; | 
| 522 | localInertiaVec[7] = -yz; | 
| 523 | localInertiaVec[8] = xx+yy; | 
| 524 |  | 
| 525 | //Sum and distribute inertia and angmom arrays | 
| 526 | #ifdef MPI | 
| 527 |  | 
| 528 | MPI_Allreduce(localInertiaVec, inertiaVec, 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 529 |  | 
| 530 | MPI_Allreduce(localAngMom.vec, angMom.vec, 3, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 531 |  | 
| 532 | inertiaMat.element[0][0] = inertiaVec[0]; | 
| 533 | inertiaMat.element[0][1] = inertiaVec[1]; | 
| 534 | inertiaMat.element[0][2] = inertiaVec[2]; | 
| 535 |  | 
| 536 | inertiaMat.element[1][0] = inertiaVec[3]; | 
| 537 | inertiaMat.element[1][1] = inertiaVec[4]; | 
| 538 | inertiaMat.element[1][2] = inertiaVec[5]; | 
| 539 |  | 
| 540 | inertiaMat.element[2][0] = inertiaVec[6]; | 
| 541 | inertiaMat.element[2][1] = inertiaVec[7]; | 
| 542 | inertiaMat.element[2][2] = inertiaVec[8]; | 
| 543 |  | 
| 544 | #else | 
| 545 |  | 
| 546 | inertiaMat.element[0][0] = localInertiaVec[0]; | 
| 547 | inertiaMat.element[0][1] = localInertiaVec[1]; | 
| 548 | inertiaMat.element[0][2] = localInertiaVec[2]; | 
| 549 |  | 
| 550 | inertiaMat.element[1][0] = localInertiaVec[3]; | 
| 551 | inertiaMat.element[1][1] = localInertiaVec[4]; | 
| 552 | inertiaMat.element[1][2] = localInertiaVec[5]; | 
| 553 |  | 
| 554 | inertiaMat.element[2][0] = localInertiaVec[6]; | 
| 555 | inertiaMat.element[2][1] = localInertiaVec[7]; | 
| 556 | inertiaMat.element[2][2] = localInertiaVec[8]; | 
| 557 |  | 
| 558 | angMom     = localAngMom; | 
| 559 | #endif | 
| 560 |  | 
| 561 | //invert the moment of inertia tensor by LU-decomposition / backsolving: | 
| 562 |  | 
| 563 | inverseInertiaMat = inertiaMat.inverse(); | 
| 564 |  | 
| 565 | //calculate the angular velocities: omega = I^-1 . L | 
| 566 |  | 
| 567 | omega = inverseInertiaMat * angMom; | 
| 568 |  | 
| 569 | //subtract out center of mass velocity and angular momentum from | 
| 570 | //particle velocities | 
| 571 |  | 
| 572 | for(size_t i = 0; i < integrableObjects.size(); i++){ | 
| 573 | vel = vMinusVCom[i] - crossProduct(omega, qMinusQCom[i]); | 
| 574 | integrableObjects[i]->setVel(vel.vec); | 
| 575 | } | 
| 576 | } | 
| 577 |  | 
| 578 | double Thermo::getConsEnergy(){ | 
| 579 | ConstraintPair* consPair; | 
| 580 | double totConsEnergy; | 
| 581 | double bondLen2; | 
| 582 | double dist; | 
| 583 | double lamda; | 
| 584 |  | 
| 585 | totConsEnergy = 0; | 
| 586 |  | 
| 587 | for(cpIter->first(); !cpIter->isEnd(); cpIter->next()){ | 
| 588 | consPair =  cpIter->currentItem(); | 
| 589 | bondLen2 = consPair->getBondLength2(); | 
| 590 | lamda = consPair->getLamda(); | 
| 591 | //dist = consPair->getDistance(); | 
| 592 |  | 
| 593 | //totConsEnergy += lamda * (dist*dist - bondLen2); | 
| 594 | } | 
| 595 |  | 
| 596 | return totConsEnergy; | 
| 597 | } | 
| 598 |  | 
| 599 |  |