11 |
|
#include "Integrator.hpp" |
12 |
|
#include "simError.h" |
13 |
|
#include "MatVec3.h" |
14 |
+ |
#include "ConstraintManager.hpp" |
15 |
+ |
#include "Mat3x3d.hpp" |
16 |
|
|
17 |
|
#ifdef IS_MPI |
18 |
|
#define __C |
19 |
|
#include "mpiSimulation.hpp" |
20 |
|
#endif // is_mpi |
21 |
|
|
22 |
+ |
inline double roundMe( double x ){ |
23 |
+ |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
24 |
+ |
} |
25 |
+ |
|
26 |
|
Thermo::Thermo( SimInfo* the_info ) { |
27 |
|
info = the_info; |
28 |
|
int baseSeed = the_info->getSeed(); |
29 |
|
|
30 |
|
gaussStream = new gaussianSPRNG( baseSeed ); |
31 |
+ |
|
32 |
+ |
cpIter = info->consMan->createPairIterator(); |
33 |
|
} |
34 |
|
|
35 |
|
Thermo::~Thermo(){ |
36 |
|
delete gaussStream; |
37 |
+ |
delete cpIter; |
38 |
|
} |
39 |
|
|
40 |
|
double Thermo::getKinetic(){ |
205 |
|
const double e_convert = 4.184e-4; |
206 |
|
|
207 |
|
double molmass, volume; |
208 |
< |
double vcom[3], pcom[3], fcom[3], scaled[3]; |
208 |
> |
double vcom[3]; |
209 |
|
double p_local[9], p_global[9]; |
210 |
< |
int i, j, k, nMols; |
202 |
< |
Molecule* molecules; |
210 |
> |
int i, j, k; |
211 |
|
|
204 |
– |
nMols = info->n_mol; |
205 |
– |
molecules = info->molecules; |
206 |
– |
//tau = info->tau; |
207 |
– |
|
208 |
– |
// use velocities of molecular centers of mass and molecular masses: |
212 |
|
for (i=0; i < 9; i++) { |
213 |
|
p_local[i] = 0.0; |
214 |
|
p_global[i] = 0.0; |
215 |
|
} |
216 |
|
|
217 |
+ |
// use velocities of integrableObjects and their masses: |
218 |
+ |
|
219 |
|
for (i=0; i < info->integrableObjects.size(); i++) { |
220 |
|
|
221 |
|
molmass = info->integrableObjects[i]->getMass(); |
222 |
|
|
223 |
|
info->integrableObjects[i]->getVel(vcom); |
219 |
– |
info->integrableObjects[i]->getPos(pcom); |
220 |
– |
info->integrableObjects[i]->getFrc(fcom); |
221 |
– |
|
222 |
– |
matVecMul3(info->HmatInv, pcom, scaled); |
223 |
– |
|
224 |
– |
for(j=0; j<3; j++) |
225 |
– |
scaled[j] -= roundMe(scaled[j]); |
226 |
– |
|
227 |
– |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
228 |
– |
|
229 |
– |
matVecMul3(info->Hmat, scaled, pcom); |
224 |
|
|
225 |
< |
p_local[0] += molmass * (vcom[0] * vcom[0]) + fcom[0]*pcom[0]*eConvert; |
226 |
< |
p_local[1] += molmass * (vcom[0] * vcom[1]) + fcom[0]*pcom[1]*eConvert; |
227 |
< |
p_local[2] += molmass * (vcom[0] * vcom[2]) + fcom[0]*pcom[2]*eConvert; |
228 |
< |
p_local[3] += molmass * (vcom[1] * vcom[0]) + fcom[1]*pcom[0]*eConvert; |
229 |
< |
p_local[4] += molmass * (vcom[1] * vcom[1]) + fcom[1]*pcom[1]*eConvert; |
230 |
< |
p_local[5] += molmass * (vcom[1] * vcom[2]) + fcom[1]*pcom[2]*eConvert; |
231 |
< |
p_local[6] += molmass * (vcom[2] * vcom[0]) + fcom[2]*pcom[0]*eConvert; |
232 |
< |
p_local[7] += molmass * (vcom[2] * vcom[1]) + fcom[2]*pcom[1]*eConvert; |
233 |
< |
p_local[8] += molmass * (vcom[2] * vcom[2]) + fcom[2]*pcom[2]*eConvert; |
234 |
< |
|
225 |
> |
p_local[0] += molmass * (vcom[0] * vcom[0]); |
226 |
> |
p_local[1] += molmass * (vcom[0] * vcom[1]); |
227 |
> |
p_local[2] += molmass * (vcom[0] * vcom[2]); |
228 |
> |
p_local[3] += molmass * (vcom[1] * vcom[0]); |
229 |
> |
p_local[4] += molmass * (vcom[1] * vcom[1]); |
230 |
> |
p_local[5] += molmass * (vcom[1] * vcom[2]); |
231 |
> |
p_local[6] += molmass * (vcom[2] * vcom[0]); |
232 |
> |
p_local[7] += molmass * (vcom[2] * vcom[1]); |
233 |
> |
p_local[8] += molmass * (vcom[2] * vcom[2]); |
234 |
> |
|
235 |
|
} |
236 |
|
|
237 |
|
// Get total for entire system from MPI. |
238 |
< |
|
238 |
> |
|
239 |
|
#ifdef IS_MPI |
240 |
|
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
241 |
|
#else |
246 |
|
|
247 |
|
volume = this->getVolume(); |
248 |
|
|
249 |
+ |
|
250 |
+ |
|
251 |
|
for(i = 0; i < 3; i++) { |
252 |
|
for (j = 0; j < 3; j++) { |
253 |
|
k = 3*i + j; |
254 |
< |
press[i][j] = p_global[k] / volume; |
259 |
< |
|
254 |
> |
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
255 |
|
} |
256 |
|
} |
257 |
|
} |
442 |
|
|
443 |
|
info->integrableObjects[vd]->setVel( aVel ); |
444 |
|
} |
445 |
< |
} |
445 |
> |
} |
446 |
> |
|
447 |
> |
void Thermo::removeAngularMomentum(){ |
448 |
> |
Vector3d vcom; |
449 |
> |
Vector3d qcom; |
450 |
> |
Vector3d pos; |
451 |
> |
Vector3d vel; |
452 |
> |
double mass; |
453 |
> |
double xx; |
454 |
> |
double yy; |
455 |
> |
double zz; |
456 |
> |
double xy; |
457 |
> |
double xz; |
458 |
> |
double yz; |
459 |
> |
Vector3d localAngMom; |
460 |
> |
Vector3d angMom; |
461 |
> |
Vector3d omega; |
462 |
> |
vector<StuntDouble *> integrableObjects; |
463 |
> |
double localInertiaVec[9]; |
464 |
> |
double inertiaVec[9]; |
465 |
> |
vector<Vector3d> qMinusQCom; |
466 |
> |
vector<Vector3d> vMinusVCom; |
467 |
> |
Mat3x3d inertiaMat; |
468 |
> |
Mat3x3d inverseInertiaMat; |
469 |
> |
|
470 |
> |
integrableObjects = info->integrableObjects; |
471 |
> |
qMinusQCom.resize(integrableObjects.size()); |
472 |
> |
vMinusVCom.resize(integrableObjects.size()); |
473 |
> |
|
474 |
> |
getCOM(qcom.vec); |
475 |
> |
getCOMVel(vcom.vec); |
476 |
> |
|
477 |
> |
//initialize components for inertia tensor |
478 |
> |
xx = 0.0; |
479 |
> |
yy = 0.0; |
480 |
> |
zz = 0.0; |
481 |
> |
xy = 0.0; |
482 |
> |
xz = 0.0; |
483 |
> |
yz = 0.0; |
484 |
> |
|
485 |
> |
//build components of Inertia tensor |
486 |
> |
// |
487 |
> |
// [ Ixx -Ixy -Ixz ] |
488 |
> |
// J = | -Iyx Iyy -Iyz | |
489 |
> |
// [ -Izx -Iyz Izz ] |
490 |
> |
//See Fowles and Cassidy Chapter 9 or Goldstein Chapter 5 |
491 |
> |
for(size_t i = 0; i < integrableObjects.size(); i++){ |
492 |
> |
integrableObjects[i]->getPos(pos.vec); |
493 |
> |
integrableObjects[i]->getVel(vel.vec); |
494 |
> |
mass = integrableObjects[i]->getMass(); |
495 |
> |
|
496 |
> |
qMinusQCom[i] = pos - qcom; |
497 |
> |
info->wrapVector(qMinusQCom[i].vec); |
498 |
> |
|
499 |
> |
vMinusVCom[i] = vel - vcom; |
500 |
> |
|
501 |
> |
//compute moment of inertia coefficents |
502 |
> |
xx += qMinusQCom[i].x * qMinusQCom[i].x * mass; |
503 |
> |
yy += qMinusQCom[i].y * qMinusQCom[i].y * mass; |
504 |
> |
zz += qMinusQCom[i].z * qMinusQCom[i].z * mass; |
505 |
> |
|
506 |
> |
// compute products of inertia |
507 |
> |
xy += qMinusQCom[i].x * qMinusQCom[i].y * mass; |
508 |
> |
xz += qMinusQCom[i].x * qMinusQCom[i].z * mass; |
509 |
> |
yz += qMinusQCom[i].y * qMinusQCom[i].z * mass; |
510 |
> |
|
511 |
> |
localAngMom += crossProduct(qMinusQCom[i] , vMinusVCom[i] ) * mass; |
512 |
> |
|
513 |
> |
} |
514 |
> |
|
515 |
> |
localInertiaVec[0] =yy+zz; |
516 |
> |
localInertiaVec[1] = -xy; |
517 |
> |
localInertiaVec[2] = -xz; |
518 |
> |
localInertiaVec[3] = -xy; |
519 |
> |
localInertiaVec[4] = xx+zz; |
520 |
> |
localInertiaVec[5] = -yz; |
521 |
> |
localInertiaVec[6] = -xz; |
522 |
> |
localInertiaVec[7] = -yz; |
523 |
> |
localInertiaVec[8] = xx+yy; |
524 |
> |
|
525 |
> |
//Sum and distribute inertia and angmom arrays |
526 |
> |
#ifdef MPI |
527 |
> |
|
528 |
> |
MPI_Allreduce(localInertiaVec, inertiaVec, 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
529 |
> |
|
530 |
> |
MPI_Allreduce(localAngMom.vec, angMom.vec, 3, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
531 |
> |
|
532 |
> |
inertiaMat.element[0][0] = inertiaVec[0]; |
533 |
> |
inertiaMat.element[0][1] = inertiaVec[1]; |
534 |
> |
inertiaMat.element[0][2] = inertiaVec[2]; |
535 |
> |
|
536 |
> |
inertiaMat.element[1][0] = inertiaVec[3]; |
537 |
> |
inertiaMat.element[1][1] = inertiaVec[4]; |
538 |
> |
inertiaMat.element[1][2] = inertiaVec[5]; |
539 |
> |
|
540 |
> |
inertiaMat.element[2][0] = inertiaVec[6]; |
541 |
> |
inertiaMat.element[2][1] = inertiaVec[7]; |
542 |
> |
inertiaMat.element[2][2] = inertiaVec[8]; |
543 |
> |
|
544 |
> |
#else |
545 |
> |
|
546 |
> |
inertiaMat.element[0][0] = localInertiaVec[0]; |
547 |
> |
inertiaMat.element[0][1] = localInertiaVec[1]; |
548 |
> |
inertiaMat.element[0][2] = localInertiaVec[2]; |
549 |
> |
|
550 |
> |
inertiaMat.element[1][0] = localInertiaVec[3]; |
551 |
> |
inertiaMat.element[1][1] = localInertiaVec[4]; |
552 |
> |
inertiaMat.element[1][2] = localInertiaVec[5]; |
553 |
> |
|
554 |
> |
inertiaMat.element[2][0] = localInertiaVec[6]; |
555 |
> |
inertiaMat.element[2][1] = localInertiaVec[7]; |
556 |
> |
inertiaMat.element[2][2] = localInertiaVec[8]; |
557 |
> |
|
558 |
> |
angMom = localAngMom; |
559 |
> |
#endif |
560 |
> |
|
561 |
> |
//invert the moment of inertia tensor by LU-decomposition / backsolving: |
562 |
> |
|
563 |
> |
inverseInertiaMat = inertiaMat.inverse(); |
564 |
> |
|
565 |
> |
//calculate the angular velocities: omega = I^-1 . L |
566 |
> |
|
567 |
> |
omega = inverseInertiaMat * angMom; |
568 |
> |
|
569 |
> |
//subtract out center of mass velocity and angular momentum from |
570 |
> |
//particle velocities |
571 |
> |
|
572 |
> |
for(size_t i = 0; i < integrableObjects.size(); i++){ |
573 |
> |
vel = vMinusVCom[i] - crossProduct(omega, qMinusQCom[i]); |
574 |
> |
integrableObjects[i]->setVel(vel.vec); |
575 |
> |
} |
576 |
> |
} |
577 |
> |
|
578 |
> |
double Thermo::getConsEnergy(){ |
579 |
> |
ConstraintPair* consPair; |
580 |
> |
double totConsEnergy; |
581 |
> |
double bondLen2; |
582 |
> |
double dist; |
583 |
> |
double lamda; |
584 |
> |
|
585 |
> |
totConsEnergy = 0; |
586 |
> |
|
587 |
> |
for(cpIter->first(); !cpIter->isEnd(); cpIter->next()){ |
588 |
> |
consPair = cpIter->currentItem(); |
589 |
> |
bondLen2 = consPair->getBondLength2(); |
590 |
> |
lamda = consPair->getLamda(); |
591 |
> |
//dist = consPair->getDistance(); |
592 |
> |
|
593 |
> |
//totConsEnergy += lamda * (dist*dist - bondLen2); |
594 |
> |
} |
595 |
> |
|
596 |
> |
return totConsEnergy; |
597 |
> |
} |
598 |
> |
|
599 |
> |
|