| 4 |
|
|
| 5 |
|
#ifdef IS_MPI |
| 6 |
|
#include <mpi.h> |
| 7 |
– |
#include <mpi++.h> |
| 7 |
|
#endif //is_mpi |
| 8 |
|
|
| 9 |
|
#include "Thermo.hpp" |
| 72 |
|
} |
| 73 |
|
} |
| 74 |
|
#ifdef IS_MPI |
| 75 |
< |
MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM); |
| 75 |
> |
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
| 76 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 77 |
|
kinetic = kinetic_global; |
| 78 |
|
#endif //is_mpi |
| 79 |
|
|
| 100 |
|
potential_local += molecules[el].getPotential(); |
| 101 |
|
} |
| 102 |
|
|
| 103 |
– |
#ifdef IS_MPI |
| 104 |
– |
/* |
| 105 |
– |
std::cerr << "node " << worldRank << ": before LONG RANGE pot = " << entry_plug->lrPot |
| 106 |
– |
<< "; pot_local = " << potential_local |
| 107 |
– |
<< "; pot = " << potential << "\n"; |
| 108 |
– |
*/ |
| 109 |
– |
#endif |
| 110 |
– |
|
| 103 |
|
// Get total potential for entire system from MPI. |
| 104 |
|
#ifdef IS_MPI |
| 105 |
< |
MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM); |
| 105 |
> |
MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, |
| 106 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 107 |
|
#else |
| 108 |
|
potential = potential_local; |
| 109 |
|
#endif // is_mpi |
| 129 |
|
|
| 130 |
|
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
| 131 |
|
double temperature; |
| 139 |
– |
int ndf_local, ndf; |
| 132 |
|
|
| 133 |
< |
ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
| 134 |
< |
- entry_plug->n_constraints; |
| 133 |
> |
temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb ); |
| 134 |
> |
return temperature; |
| 135 |
> |
} |
| 136 |
|
|
| 137 |
< |
#ifdef IS_MPI |
| 145 |
< |
MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
| 146 |
< |
#else |
| 147 |
< |
ndf = ndf_local; |
| 148 |
< |
#endif |
| 137 |
> |
double Thermo::getEnthalpy() { |
| 138 |
|
|
| 139 |
< |
ndf = ndf - 3; |
| 139 |
> |
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
| 140 |
> |
double u, p, v; |
| 141 |
> |
double press[9]; |
| 142 |
> |
|
| 143 |
> |
u = this->getTotalE(); |
| 144 |
> |
|
| 145 |
> |
this->getPressureTensor(press); |
| 146 |
> |
p = (press[0] + press[4] + press[8]) / 3.0; |
| 147 |
> |
|
| 148 |
> |
v = this->getVolume(); |
| 149 |
> |
|
| 150 |
> |
return (u + (p*v)/e_convert); |
| 151 |
> |
} |
| 152 |
> |
|
| 153 |
> |
double Thermo::getVolume() { |
| 154 |
> |
double theBox[3]; |
| 155 |
> |
|
| 156 |
> |
entry_plug->getBox(theBox); |
| 157 |
> |
return (theBox[0] * theBox[1] * theBox[2]); |
| 158 |
> |
} |
| 159 |
> |
|
| 160 |
> |
double Thermo::getPressure() { |
| 161 |
> |
// returns the pressure in units of atm |
| 162 |
> |
// Relies on the calculation of the full molecular pressure tensor |
| 163 |
|
|
| 164 |
< |
temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); |
| 165 |
< |
return temperature; |
| 164 |
> |
const double p_convert = 1.63882576e8; |
| 165 |
> |
double press[9]; |
| 166 |
> |
double pressure; |
| 167 |
> |
|
| 168 |
> |
this->getPressureTensor(press); |
| 169 |
> |
|
| 170 |
> |
pressure = p_convert * (press[0] + press[4] + press[8]) / 3.0; |
| 171 |
> |
|
| 172 |
> |
return pressure; |
| 173 |
|
} |
| 174 |
|
|
| 156 |
– |
double Thermo::getPressure(){ |
| 175 |
|
|
| 176 |
< |
// const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm |
| 177 |
< |
// const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa |
| 178 |
< |
// const double conv_A_m = 1.0E-10; //convert A -> m |
| 176 |
> |
void Thermo::getPressureTensor(double press[9]){ |
| 177 |
> |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
| 178 |
> |
// routine derived via viral theorem description in: |
| 179 |
> |
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
| 180 |
|
|
| 181 |
< |
return 0.0; |
| 181 |
> |
const double e_convert = 4.184e-4; |
| 182 |
> |
|
| 183 |
> |
double molmass, volume; |
| 184 |
> |
double vcom[3]; |
| 185 |
> |
double p_local[9], p_global[9]; |
| 186 |
> |
double theBox[3]; |
| 187 |
> |
double* tau; |
| 188 |
> |
int i, nMols; |
| 189 |
> |
Molecule* molecules; |
| 190 |
> |
|
| 191 |
> |
nMols = entry_plug->n_mol; |
| 192 |
> |
molecules = entry_plug->molecules; |
| 193 |
> |
tau = entry_plug->tau; |
| 194 |
> |
|
| 195 |
> |
// use velocities of molecular centers of mass and molecular masses: |
| 196 |
> |
for (i=0; i < 9; i++) { |
| 197 |
> |
p_local[i] = 0.0; |
| 198 |
> |
p_global[i] = 0.0; |
| 199 |
> |
} |
| 200 |
> |
|
| 201 |
> |
for (i=0; i < nMols; i++) { |
| 202 |
> |
molmass = molecules[i].getCOMvel(vcom); |
| 203 |
> |
|
| 204 |
> |
p_local[0] += molmass * (vcom[0] * vcom[0]); |
| 205 |
> |
p_local[1] += molmass * (vcom[0] * vcom[1]); |
| 206 |
> |
p_local[2] += molmass * (vcom[0] * vcom[2]); |
| 207 |
> |
p_local[3] += molmass * (vcom[1] * vcom[0]); |
| 208 |
> |
p_local[4] += molmass * (vcom[1] * vcom[1]); |
| 209 |
> |
p_local[5] += molmass * (vcom[1] * vcom[2]); |
| 210 |
> |
p_local[6] += molmass * (vcom[2] * vcom[0]); |
| 211 |
> |
p_local[7] += molmass * (vcom[2] * vcom[1]); |
| 212 |
> |
p_local[8] += molmass * (vcom[2] * vcom[2]); |
| 213 |
> |
} |
| 214 |
> |
|
| 215 |
> |
// Get total for entire system from MPI. |
| 216 |
> |
|
| 217 |
> |
#ifdef IS_MPI |
| 218 |
> |
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
| 219 |
> |
#else |
| 220 |
> |
for (i=0; i<9; i++) { |
| 221 |
> |
p_global[i] = p_local[i]; |
| 222 |
> |
} |
| 223 |
> |
#endif // is_mpi |
| 224 |
> |
|
| 225 |
> |
entry_plug->getBox(theBox); |
| 226 |
> |
|
| 227 |
> |
volume = theBox[0] * theBox[1] * theBox[2]; |
| 228 |
> |
|
| 229 |
> |
for(i=0; i<9; i++) { |
| 230 |
> |
press[i] = (p_global[i] - tau[i]*e_convert) / volume; |
| 231 |
> |
} |
| 232 |
|
} |
| 233 |
|
|
| 234 |
|
void Thermo::velocitize() { |
| 242 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
| 243 |
|
double av2; |
| 244 |
|
double kebar; |
| 176 |
– |
int ndf, ndf_local; // number of degrees of freedom |
| 177 |
– |
int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom |
| 245 |
|
int n_atoms; |
| 246 |
|
Atom** atoms; |
| 247 |
|
DirectionalAtom* dAtom; |
| 255 |
|
n_oriented = entry_plug->n_oriented; |
| 256 |
|
n_constraints = entry_plug->n_constraints; |
| 257 |
|
|
| 258 |
< |
// Raw degrees of freedom that we have to set |
| 259 |
< |
ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented; |
| 193 |
< |
|
| 194 |
< |
// Degrees of freedom that can contain kinetic energy |
| 195 |
< |
ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
| 196 |
< |
- entry_plug->n_constraints; |
| 258 |
> |
kebar = kb * temperature * (double)entry_plug->ndf / |
| 259 |
> |
( 2.0 * (double)entry_plug->ndfRaw ); |
| 260 |
|
|
| 198 |
– |
#ifdef IS_MPI |
| 199 |
– |
MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
| 200 |
– |
MPI::COMM_WORLD.Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM); |
| 201 |
– |
#else |
| 202 |
– |
ndfRaw = ndfRaw_local; |
| 203 |
– |
ndf = ndf_local; |
| 204 |
– |
#endif |
| 205 |
– |
ndf = ndf - 3; |
| 206 |
– |
|
| 207 |
– |
kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); |
| 208 |
– |
|
| 261 |
|
for(vr = 0; vr < n_atoms; vr++){ |
| 262 |
|
|
| 263 |
|
// uses equipartition theory to solve for vbar in angstrom/fs |
| 313 |
|
|
| 314 |
|
vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); |
| 315 |
|
jy = vbar * gaussStream->getGaussian(); |
| 316 |
< |
|
| 316 |
> |
|
| 317 |
|
vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); |
| 318 |
|
jz = vbar * gaussStream->getGaussian(); |
| 319 |
|
|
| 353 |
|
} |
| 354 |
|
|
| 355 |
|
#ifdef IS_MPI |
| 356 |
< |
MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM); |
| 357 |
< |
MPI::COMM_WORLD.Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM); |
| 356 |
> |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 357 |
> |
MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 358 |
|
#else |
| 359 |
|
mtot = mtot_local; |
| 360 |
|
for(vd = 0; vd < 3; vd++) { |