1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
|
#include <iostream> |
3 |
|
using namespace std; |
4 |
|
|
10 |
|
#include "SRI.hpp" |
11 |
|
#include "Integrator.hpp" |
12 |
|
#include "simError.h" |
13 |
+ |
#include "MatVec3.h" |
14 |
|
|
15 |
|
#ifdef IS_MPI |
16 |
|
#define __C |
17 |
|
#include "mpiSimulation.hpp" |
18 |
|
#endif // is_mpi |
19 |
|
|
20 |
+ |
inline double roundMe( double x ){ |
21 |
+ |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
22 |
+ |
} |
23 |
|
|
24 |
< |
#define BASE_SEED 123456789 |
25 |
< |
|
26 |
< |
Thermo::Thermo( SimInfo* the_entry_plug ) { |
23 |
< |
entry_plug = the_entry_plug; |
24 |
< |
int baseSeed = BASE_SEED; |
24 |
> |
Thermo::Thermo( SimInfo* the_info ) { |
25 |
> |
info = the_info; |
26 |
> |
int baseSeed = the_info->getSeed(); |
27 |
|
|
28 |
|
gaussStream = new gaussianSPRNG( baseSeed ); |
29 |
|
} |
35 |
|
double Thermo::getKinetic(){ |
36 |
|
|
37 |
|
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
38 |
< |
double vx2, vy2, vz2; |
39 |
< |
double kinetic, v_sqr; |
40 |
< |
int kl; |
41 |
< |
double jx2, jy2, jz2; // the square of the angular momentums |
38 |
> |
double kinetic; |
39 |
> |
double amass; |
40 |
> |
double aVel[3], aJ[3], I[3][3]; |
41 |
> |
int i, j, k, kl; |
42 |
|
|
41 |
– |
DirectionalAtom *dAtom; |
42 |
– |
|
43 |
– |
int n_atoms; |
43 |
|
double kinetic_global; |
44 |
< |
Atom** atoms; |
46 |
< |
|
44 |
> |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
45 |
|
|
48 |
– |
n_atoms = entry_plug->n_atoms; |
49 |
– |
atoms = entry_plug->atoms; |
50 |
– |
|
46 |
|
kinetic = 0.0; |
47 |
|
kinetic_global = 0.0; |
53 |
– |
for( kl=0; kl < n_atoms; kl++ ){ |
48 |
|
|
49 |
< |
vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx(); |
50 |
< |
vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy(); |
51 |
< |
vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz(); |
49 |
> |
for (kl=0; kl<integrableObjects.size(); kl++) { |
50 |
> |
integrableObjects[kl]->getVel(aVel); |
51 |
> |
amass = integrableObjects[kl]->getMass(); |
52 |
|
|
53 |
< |
v_sqr = vx2 + vy2 + vz2; |
54 |
< |
kinetic += atoms[kl]->getMass() * v_sqr; |
53 |
> |
for(j=0; j<3; j++) |
54 |
> |
kinetic += amass*aVel[j]*aVel[j]; |
55 |
|
|
56 |
< |
if( atoms[kl]->isDirectional() ){ |
57 |
< |
|
58 |
< |
dAtom = (DirectionalAtom *)atoms[kl]; |
59 |
< |
|
60 |
< |
jx2 = dAtom->getJx() * dAtom->getJx(); |
61 |
< |
jy2 = dAtom->getJy() * dAtom->getJy(); |
62 |
< |
jz2 = dAtom->getJz() * dAtom->getJz(); |
63 |
< |
|
64 |
< |
kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy()) |
65 |
< |
+ (jz2 / dAtom->getIzz()); |
66 |
< |
} |
56 |
> |
if (integrableObjects[kl]->isDirectional()){ |
57 |
> |
|
58 |
> |
integrableObjects[kl]->getJ( aJ ); |
59 |
> |
integrableObjects[kl]->getI( I ); |
60 |
> |
|
61 |
> |
if (integrableObjects[kl]->isLinear()) { |
62 |
> |
i = integrableObjects[kl]->linearAxis(); |
63 |
> |
j = (i+1)%3; |
64 |
> |
k = (i+2)%3; |
65 |
> |
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
66 |
> |
} else { |
67 |
> |
for (j=0; j<3; j++) |
68 |
> |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
69 |
> |
} |
70 |
> |
} |
71 |
|
} |
72 |
|
#ifdef IS_MPI |
73 |
|
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
74 |
|
MPI_SUM, MPI_COMM_WORLD); |
75 |
|
kinetic = kinetic_global; |
76 |
|
#endif //is_mpi |
77 |
< |
|
77 |
> |
|
78 |
|
kinetic = kinetic * 0.5 / e_convert; |
79 |
|
|
80 |
|
return kinetic; |
87 |
|
int el, nSRI; |
88 |
|
Molecule* molecules; |
89 |
|
|
90 |
< |
molecules = entry_plug->molecules; |
91 |
< |
nSRI = entry_plug->n_SRI; |
90 |
> |
molecules = info->molecules; |
91 |
> |
nSRI = info->n_SRI; |
92 |
|
|
93 |
|
potential_local = 0.0; |
94 |
|
potential = 0.0; |
95 |
< |
potential_local += entry_plug->lrPot; |
95 |
> |
potential_local += info->lrPot; |
96 |
|
|
97 |
< |
for( el=0; el<entry_plug->n_mol; el++ ){ |
97 |
> |
for( el=0; el<info->n_mol; el++ ){ |
98 |
|
potential_local += molecules[el].getPotential(); |
99 |
|
} |
100 |
|
|
106 |
|
potential = potential_local; |
107 |
|
#endif // is_mpi |
108 |
|
|
111 |
– |
#ifdef IS_MPI |
112 |
– |
/* |
113 |
– |
std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
114 |
– |
*/ |
115 |
– |
#endif |
116 |
– |
|
109 |
|
return potential; |
110 |
|
} |
111 |
|
|
119 |
|
|
120 |
|
double Thermo::getTemperature(){ |
121 |
|
|
122 |
< |
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
122 |
> |
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
123 |
|
double temperature; |
132 |
– |
|
133 |
– |
temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb ); |
134 |
– |
return temperature; |
135 |
– |
} |
124 |
|
|
125 |
< |
double Thermo::getEnthalpy() { |
126 |
< |
|
139 |
< |
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
140 |
< |
double u, p, v; |
141 |
< |
double press[3][3]; |
142 |
< |
|
143 |
< |
u = this->getTotalE(); |
144 |
< |
|
145 |
< |
this->getPressureTensor(press); |
146 |
< |
p = (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
147 |
< |
|
148 |
< |
v = this->getVolume(); |
149 |
< |
|
150 |
< |
return (u + (p*v)/e_convert); |
125 |
> |
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
126 |
> |
return temperature; |
127 |
|
} |
128 |
|
|
129 |
|
double Thermo::getVolume() { |
130 |
|
|
131 |
< |
return entry_plug->boxVol; |
131 |
> |
return info->boxVol; |
132 |
|
} |
133 |
|
|
134 |
|
double Thermo::getPressure() { |
146 |
|
return pressure; |
147 |
|
} |
148 |
|
|
149 |
+ |
double Thermo::getPressureX() { |
150 |
|
|
151 |
+ |
// Relies on the calculation of the full molecular pressure tensor |
152 |
+ |
|
153 |
+ |
const double p_convert = 1.63882576e8; |
154 |
+ |
double press[3][3]; |
155 |
+ |
double pressureX; |
156 |
+ |
|
157 |
+ |
this->getPressureTensor(press); |
158 |
+ |
|
159 |
+ |
pressureX = p_convert * press[0][0]; |
160 |
+ |
|
161 |
+ |
return pressureX; |
162 |
+ |
} |
163 |
+ |
|
164 |
+ |
double Thermo::getPressureY() { |
165 |
+ |
|
166 |
+ |
// Relies on the calculation of the full molecular pressure tensor |
167 |
+ |
|
168 |
+ |
const double p_convert = 1.63882576e8; |
169 |
+ |
double press[3][3]; |
170 |
+ |
double pressureY; |
171 |
+ |
|
172 |
+ |
this->getPressureTensor(press); |
173 |
+ |
|
174 |
+ |
pressureY = p_convert * press[1][1]; |
175 |
+ |
|
176 |
+ |
return pressureY; |
177 |
+ |
} |
178 |
+ |
|
179 |
+ |
double Thermo::getPressureZ() { |
180 |
+ |
|
181 |
+ |
// Relies on the calculation of the full molecular pressure tensor |
182 |
+ |
|
183 |
+ |
const double p_convert = 1.63882576e8; |
184 |
+ |
double press[3][3]; |
185 |
+ |
double pressureZ; |
186 |
+ |
|
187 |
+ |
this->getPressureTensor(press); |
188 |
+ |
|
189 |
+ |
pressureZ = p_convert * press[2][2]; |
190 |
+ |
|
191 |
+ |
return pressureZ; |
192 |
+ |
} |
193 |
+ |
|
194 |
+ |
|
195 |
|
void Thermo::getPressureTensor(double press[3][3]){ |
196 |
|
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
197 |
|
// routine derived via viral theorem description in: |
202 |
|
double molmass, volume; |
203 |
|
double vcom[3]; |
204 |
|
double p_local[9], p_global[9]; |
205 |
< |
int i, j, k, nMols; |
185 |
< |
Molecule* molecules; |
205 |
> |
int i, j, k; |
206 |
|
|
187 |
– |
nMols = entry_plug->n_mol; |
188 |
– |
molecules = entry_plug->molecules; |
189 |
– |
//tau = entry_plug->tau; |
207 |
|
|
208 |
< |
// use velocities of molecular centers of mass and molecular masses: |
208 |
> |
|
209 |
|
for (i=0; i < 9; i++) { |
210 |
|
p_local[i] = 0.0; |
211 |
|
p_global[i] = 0.0; |
212 |
|
} |
213 |
|
|
214 |
< |
for (i=0; i < nMols; i++) { |
198 |
< |
molmass = molecules[i].getCOMvel(vcom); |
214 |
> |
// use velocities of integrableObjects and their masses: |
215 |
|
|
216 |
+ |
for (i=0; i < info->integrableObjects.size(); i++) { |
217 |
+ |
|
218 |
+ |
molmass = info->integrableObjects[i]->getMass(); |
219 |
+ |
|
220 |
+ |
info->integrableObjects[i]->getVel(vcom); |
221 |
+ |
|
222 |
|
p_local[0] += molmass * (vcom[0] * vcom[0]); |
223 |
|
p_local[1] += molmass * (vcom[0] * vcom[1]); |
224 |
|
p_local[2] += molmass * (vcom[0] * vcom[2]); |
228 |
|
p_local[6] += molmass * (vcom[2] * vcom[0]); |
229 |
|
p_local[7] += molmass * (vcom[2] * vcom[1]); |
230 |
|
p_local[8] += molmass * (vcom[2] * vcom[2]); |
231 |
+ |
|
232 |
|
} |
233 |
|
|
234 |
|
// Get total for entire system from MPI. |
235 |
< |
|
235 |
> |
|
236 |
|
#ifdef IS_MPI |
237 |
|
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
238 |
|
#else |
241 |
|
} |
242 |
|
#endif // is_mpi |
243 |
|
|
244 |
< |
volume = entry_plug->boxVol; |
244 |
> |
volume = this->getVolume(); |
245 |
|
|
246 |
|
for(i = 0; i < 3; i++) { |
247 |
|
for (j = 0; j < 3; j++) { |
248 |
|
k = 3*i + j; |
249 |
< |
press[i][j] = (p_global[k] - entry_plug->tau[k]*e_convert) / volume; |
249 |
> |
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
250 |
|
} |
251 |
|
} |
252 |
|
} |
253 |
|
|
254 |
|
void Thermo::velocitize() { |
255 |
|
|
256 |
< |
double x,y; |
257 |
< |
double vx, vy, vz; |
235 |
< |
double jx, jy, jz; |
236 |
< |
int i, vr, vd; // velocity randomizer loop counters |
256 |
> |
double aVel[3], aJ[3], I[3][3]; |
257 |
> |
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
258 |
|
double vdrift[3]; |
259 |
|
double vbar; |
260 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
261 |
|
double av2; |
262 |
|
double kebar; |
242 |
– |
int n_atoms; |
243 |
– |
Atom** atoms; |
244 |
– |
DirectionalAtom* dAtom; |
263 |
|
double temperature; |
264 |
< |
int n_oriented; |
247 |
< |
int n_constraints; |
264 |
> |
int nobj; |
265 |
|
|
266 |
< |
atoms = entry_plug->atoms; |
250 |
< |
n_atoms = entry_plug->n_atoms; |
251 |
< |
temperature = entry_plug->target_temp; |
252 |
< |
n_oriented = entry_plug->n_oriented; |
253 |
< |
n_constraints = entry_plug->n_constraints; |
254 |
< |
|
255 |
< |
kebar = kb * temperature * (double)entry_plug->ndf / |
256 |
< |
( 2.0 * (double)entry_plug->ndfRaw ); |
266 |
> |
nobj = info->integrableObjects.size(); |
267 |
|
|
268 |
< |
for(vr = 0; vr < n_atoms; vr++){ |
268 |
> |
temperature = info->target_temp; |
269 |
> |
|
270 |
> |
kebar = kb * temperature * (double)info->ndfRaw / |
271 |
> |
( 2.0 * (double)info->ndf ); |
272 |
> |
|
273 |
> |
for(vr = 0; vr < nobj; vr++){ |
274 |
|
|
275 |
|
// uses equipartition theory to solve for vbar in angstrom/fs |
276 |
|
|
277 |
< |
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
277 |
> |
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
278 |
|
vbar = sqrt( av2 ); |
279 |
< |
|
265 |
< |
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
266 |
< |
|
279 |
> |
|
280 |
|
// picks random velocities from a gaussian distribution |
281 |
|
// centered on vbar |
282 |
|
|
283 |
< |
vx = vbar * gaussStream->getGaussian(); |
284 |
< |
vy = vbar * gaussStream->getGaussian(); |
285 |
< |
vz = vbar * gaussStream->getGaussian(); |
283 |
> |
for (j=0; j<3; j++) |
284 |
> |
aVel[j] = vbar * gaussStream->getGaussian(); |
285 |
> |
|
286 |
> |
info->integrableObjects[vr]->setVel( aVel ); |
287 |
> |
|
288 |
> |
if(info->integrableObjects[vr]->isDirectional()){ |
289 |
|
|
290 |
< |
atoms[vr]->set_vx( vx ); |
291 |
< |
atoms[vr]->set_vy( vy ); |
292 |
< |
atoms[vr]->set_vz( vz ); |
290 |
> |
info->integrableObjects[vr]->getI( I ); |
291 |
> |
|
292 |
> |
if (info->integrableObjects[vr]->isLinear()) { |
293 |
> |
|
294 |
> |
l= info->integrableObjects[vr]->linearAxis(); |
295 |
> |
m = (l+1)%3; |
296 |
> |
n = (l+2)%3; |
297 |
> |
|
298 |
> |
aJ[l] = 0.0; |
299 |
> |
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
300 |
> |
aJ[m] = vbar * gaussStream->getGaussian(); |
301 |
> |
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
302 |
> |
aJ[n] = vbar * gaussStream->getGaussian(); |
303 |
> |
|
304 |
> |
} else { |
305 |
> |
for (j = 0 ; j < 3; j++) { |
306 |
> |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
307 |
> |
aJ[j] = vbar * gaussStream->getGaussian(); |
308 |
> |
} |
309 |
> |
} // else isLinear |
310 |
> |
|
311 |
> |
info->integrableObjects[vr]->setJ( aJ ); |
312 |
> |
|
313 |
> |
}//isDirectional |
314 |
> |
|
315 |
|
} |
316 |
|
|
317 |
|
// Get the Center of Mass drift velocity. |
321 |
|
// Corrects for the center of mass drift. |
322 |
|
// sums all the momentum and divides by total mass. |
323 |
|
|
324 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
324 |
> |
for(vd = 0; vd < nobj; vd++){ |
325 |
|
|
326 |
< |
vx = atoms[vd]->get_vx(); |
289 |
< |
vy = atoms[vd]->get_vy(); |
290 |
< |
vz = atoms[vd]->get_vz(); |
291 |
< |
|
292 |
< |
vx -= vdrift[0]; |
293 |
< |
vy -= vdrift[1]; |
294 |
< |
vz -= vdrift[2]; |
326 |
> |
info->integrableObjects[vd]->getVel(aVel); |
327 |
|
|
328 |
< |
atoms[vd]->set_vx(vx); |
329 |
< |
atoms[vd]->set_vy(vy); |
298 |
< |
atoms[vd]->set_vz(vz); |
299 |
< |
} |
300 |
< |
if( n_oriented ){ |
301 |
< |
|
302 |
< |
for( i=0; i<n_atoms; i++ ){ |
303 |
< |
|
304 |
< |
if( atoms[i]->isDirectional() ){ |
305 |
< |
|
306 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
307 |
< |
|
308 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); |
309 |
< |
jx = vbar * gaussStream->getGaussian(); |
310 |
< |
|
311 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); |
312 |
< |
jy = vbar * gaussStream->getGaussian(); |
328 |
> |
for (j=0; j < 3; j++) |
329 |
> |
aVel[j] -= vdrift[j]; |
330 |
|
|
331 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); |
315 |
< |
jz = vbar * gaussStream->getGaussian(); |
316 |
< |
|
317 |
< |
dAtom->setJx( jx ); |
318 |
< |
dAtom->setJy( jy ); |
319 |
< |
dAtom->setJz( jz ); |
320 |
< |
} |
321 |
< |
} |
331 |
> |
info->integrableObjects[vd]->setVel( aVel ); |
332 |
|
} |
333 |
+ |
|
334 |
|
} |
335 |
|
|
336 |
|
void Thermo::getCOMVel(double vdrift[3]){ |
337 |
|
|
338 |
|
double mtot, mtot_local; |
339 |
+ |
double aVel[3], amass; |
340 |
|
double vdrift_local[3]; |
341 |
< |
int vd, n_atoms; |
342 |
< |
Atom** atoms; |
341 |
> |
int vd, j; |
342 |
> |
int nobj; |
343 |
|
|
344 |
< |
// We are very careless here with the distinction between n_atoms and n_local |
333 |
< |
// We should really fix this before someone pokes an eye out. |
344 |
> |
nobj = info->integrableObjects.size(); |
345 |
|
|
335 |
– |
n_atoms = entry_plug->n_atoms; |
336 |
– |
atoms = entry_plug->atoms; |
337 |
– |
|
346 |
|
mtot_local = 0.0; |
347 |
|
vdrift_local[0] = 0.0; |
348 |
|
vdrift_local[1] = 0.0; |
349 |
|
vdrift_local[2] = 0.0; |
350 |
|
|
351 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
351 |
> |
for(vd = 0; vd < nobj; vd++){ |
352 |
|
|
353 |
< |
vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); |
354 |
< |
vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); |
355 |
< |
vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); |
353 |
> |
amass = info->integrableObjects[vd]->getMass(); |
354 |
> |
info->integrableObjects[vd]->getVel( aVel ); |
355 |
> |
|
356 |
> |
for(j = 0; j < 3; j++) |
357 |
> |
vdrift_local[j] += aVel[j] * amass; |
358 |
|
|
359 |
< |
mtot_local += atoms[vd]->getMass(); |
359 |
> |
mtot_local += amass; |
360 |
|
} |
361 |
|
|
362 |
|
#ifdef IS_MPI |
375 |
|
|
376 |
|
} |
377 |
|
|
378 |
+ |
void Thermo::getCOM(double COM[3]){ |
379 |
+ |
|
380 |
+ |
double mtot, mtot_local; |
381 |
+ |
double aPos[3], amass; |
382 |
+ |
double COM_local[3]; |
383 |
+ |
int i, j; |
384 |
+ |
int nobj; |
385 |
+ |
|
386 |
+ |
mtot_local = 0.0; |
387 |
+ |
COM_local[0] = 0.0; |
388 |
+ |
COM_local[1] = 0.0; |
389 |
+ |
COM_local[2] = 0.0; |
390 |
+ |
|
391 |
+ |
nobj = info->integrableObjects.size(); |
392 |
+ |
for(i = 0; i < nobj; i++){ |
393 |
+ |
|
394 |
+ |
amass = info->integrableObjects[i]->getMass(); |
395 |
+ |
info->integrableObjects[i]->getPos( aPos ); |
396 |
+ |
|
397 |
+ |
for(j = 0; j < 3; j++) |
398 |
+ |
COM_local[j] += aPos[j] * amass; |
399 |
+ |
|
400 |
+ |
mtot_local += amass; |
401 |
+ |
} |
402 |
+ |
|
403 |
+ |
#ifdef IS_MPI |
404 |
+ |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
405 |
+ |
MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
406 |
+ |
#else |
407 |
+ |
mtot = mtot_local; |
408 |
+ |
for(i = 0; i < 3; i++) { |
409 |
+ |
COM[i] = COM_local[i]; |
410 |
+ |
} |
411 |
+ |
#endif |
412 |
+ |
|
413 |
+ |
for (i = 0; i < 3; i++) { |
414 |
+ |
COM[i] = COM[i] / mtot; |
415 |
+ |
} |
416 |
+ |
} |
417 |
+ |
|
418 |
+ |
void Thermo::removeCOMdrift() { |
419 |
+ |
double vdrift[3], aVel[3]; |
420 |
+ |
int vd, j, nobj; |
421 |
+ |
|
422 |
+ |
nobj = info->integrableObjects.size(); |
423 |
+ |
|
424 |
+ |
// Get the Center of Mass drift velocity. |
425 |
+ |
|
426 |
+ |
getCOMVel(vdrift); |
427 |
+ |
|
428 |
+ |
// Corrects for the center of mass drift. |
429 |
+ |
// sums all the momentum and divides by total mass. |
430 |
+ |
|
431 |
+ |
for(vd = 0; vd < nobj; vd++){ |
432 |
+ |
|
433 |
+ |
info->integrableObjects[vd]->getVel(aVel); |
434 |
+ |
|
435 |
+ |
for (j=0; j < 3; j++) |
436 |
+ |
aVel[j] -= vdrift[j]; |
437 |
+ |
|
438 |
+ |
info->integrableObjects[vd]->setVel( aVel ); |
439 |
+ |
} |
440 |
+ |
} |