10 |
|
#include "SRI.hpp" |
11 |
|
#include "Integrator.hpp" |
12 |
|
#include "simError.h" |
13 |
+ |
#include "MatVec3.h" |
14 |
|
|
15 |
|
#ifdef IS_MPI |
16 |
|
#define __C |
34 |
|
double kinetic; |
35 |
|
double amass; |
36 |
|
double aVel[3], aJ[3], I[3][3]; |
37 |
< |
int j, kl; |
37 |
> |
int i, j, k, kl; |
38 |
|
|
38 |
– |
DirectionalAtom *dAtom; |
39 |
– |
|
40 |
– |
int n_atoms; |
39 |
|
double kinetic_global; |
40 |
< |
Atom** atoms; |
43 |
< |
|
40 |
> |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
41 |
|
|
45 |
– |
n_atoms = info->n_atoms; |
46 |
– |
atoms = info->atoms; |
47 |
– |
|
42 |
|
kinetic = 0.0; |
43 |
|
kinetic_global = 0.0; |
50 |
– |
for( kl=0; kl < n_atoms; kl++ ){ |
51 |
– |
|
52 |
– |
atoms[kl]->getVel(aVel); |
53 |
– |
amass = atoms[kl]->getMass(); |
54 |
– |
|
55 |
– |
for (j=0; j < 3; j++) |
56 |
– |
kinetic += amass * aVel[j] * aVel[j]; |
44 |
|
|
45 |
< |
if( atoms[kl]->isDirectional() ){ |
46 |
< |
|
47 |
< |
dAtom = (DirectionalAtom *)atoms[kl]; |
45 |
> |
for (kl=0; kl<integrableObjects.size(); kl++) { |
46 |
> |
integrableObjects[kl]->getVel(aVel); |
47 |
> |
amass = integrableObjects[kl]->getMass(); |
48 |
|
|
49 |
< |
dAtom->getJ( aJ ); |
50 |
< |
dAtom->getI( I ); |
51 |
< |
|
52 |
< |
for (j=0; j<3; j++) |
53 |
< |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
54 |
< |
|
55 |
< |
} |
49 |
> |
for(j=0; j<3; j++) |
50 |
> |
kinetic += amass*aVel[j]*aVel[j]; |
51 |
> |
|
52 |
> |
if (integrableObjects[kl]->isDirectional()){ |
53 |
> |
|
54 |
> |
integrableObjects[kl]->getJ( aJ ); |
55 |
> |
integrableObjects[kl]->getI( I ); |
56 |
> |
|
57 |
> |
if (integrableObjects[kl]->isLinear()) { |
58 |
> |
i = integrableObjects[kl]->linearAxis(); |
59 |
> |
j = (i+1)%3; |
60 |
> |
k = (i+2)%3; |
61 |
> |
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
62 |
> |
} else { |
63 |
> |
for (j=0; j<3; j++) |
64 |
> |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
65 |
> |
} |
66 |
> |
} |
67 |
|
} |
68 |
|
#ifdef IS_MPI |
69 |
|
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
70 |
|
MPI_SUM, MPI_COMM_WORLD); |
71 |
|
kinetic = kinetic_global; |
72 |
|
#endif //is_mpi |
73 |
< |
|
73 |
> |
|
74 |
|
kinetic = kinetic * 0.5 / e_convert; |
75 |
|
|
76 |
|
return kinetic; |
102 |
|
potential = potential_local; |
103 |
|
#endif // is_mpi |
104 |
|
|
107 |
– |
#ifdef IS_MPI |
108 |
– |
/* |
109 |
– |
std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
110 |
– |
*/ |
111 |
– |
#endif |
112 |
– |
|
105 |
|
return potential; |
106 |
|
} |
107 |
|
|
117 |
|
|
118 |
|
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
119 |
|
double temperature; |
120 |
< |
|
120 |
> |
|
121 |
|
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
122 |
|
return temperature; |
123 |
|
} |
196 |
|
const double e_convert = 4.184e-4; |
197 |
|
|
198 |
|
double molmass, volume; |
199 |
< |
double vcom[3]; |
199 |
> |
double vcom[3], pcom[3], fcom[3], scaled[3]; |
200 |
|
double p_local[9], p_global[9]; |
201 |
|
int i, j, k, nMols; |
202 |
|
Molecule* molecules; |
211 |
|
p_global[i] = 0.0; |
212 |
|
} |
213 |
|
|
214 |
< |
for (i=0; i < nMols; i++) { |
223 |
< |
molmass = molecules[i].getCOMvel(vcom); |
214 |
> |
for (i=0; i < info->integrableObjects.size(); i++) { |
215 |
|
|
216 |
< |
p_local[0] += molmass * (vcom[0] * vcom[0]); |
217 |
< |
p_local[1] += molmass * (vcom[0] * vcom[1]); |
218 |
< |
p_local[2] += molmass * (vcom[0] * vcom[2]); |
219 |
< |
p_local[3] += molmass * (vcom[1] * vcom[0]); |
220 |
< |
p_local[4] += molmass * (vcom[1] * vcom[1]); |
221 |
< |
p_local[5] += molmass * (vcom[1] * vcom[2]); |
222 |
< |
p_local[6] += molmass * (vcom[2] * vcom[0]); |
223 |
< |
p_local[7] += molmass * (vcom[2] * vcom[1]); |
224 |
< |
p_local[8] += molmass * (vcom[2] * vcom[2]); |
216 |
> |
molmass = info->integrableObjects[i]->getMass(); |
217 |
> |
|
218 |
> |
info->integrableObjects[i]->getVel(vcom); |
219 |
> |
info->integrableObjects[i]->getPos(pcom); |
220 |
> |
info->integrableObjects[i]->getFrc(fcom); |
221 |
> |
|
222 |
> |
matVecMul3(info->HmatInv, pcom, scaled); |
223 |
> |
|
224 |
> |
for(j=0; j<3; j++) |
225 |
> |
scaled[j] -= roundMe(scaled[j]); |
226 |
> |
|
227 |
> |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
228 |
> |
|
229 |
> |
matVecMul3(info->Hmat, scaled, pcom); |
230 |
> |
|
231 |
> |
p_local[0] += molmass * (vcom[0] * vcom[0]) + fcom[0]*pcom[0]*eConvert; |
232 |
> |
p_local[1] += molmass * (vcom[0] * vcom[1]) + fcom[0]*pcom[1]*eConvert; |
233 |
> |
p_local[2] += molmass * (vcom[0] * vcom[2]) + fcom[0]*pcom[2]*eConvert; |
234 |
> |
p_local[3] += molmass * (vcom[1] * vcom[0]) + fcom[1]*pcom[0]*eConvert; |
235 |
> |
p_local[4] += molmass * (vcom[1] * vcom[1]) + fcom[1]*pcom[1]*eConvert; |
236 |
> |
p_local[5] += molmass * (vcom[1] * vcom[2]) + fcom[1]*pcom[2]*eConvert; |
237 |
> |
p_local[6] += molmass * (vcom[2] * vcom[0]) + fcom[2]*pcom[0]*eConvert; |
238 |
> |
p_local[7] += molmass * (vcom[2] * vcom[1]) + fcom[2]*pcom[1]*eConvert; |
239 |
> |
p_local[8] += molmass * (vcom[2] * vcom[2]) + fcom[2]*pcom[2]*eConvert; |
240 |
> |
|
241 |
|
} |
242 |
|
|
243 |
|
// Get total for entire system from MPI. |
255 |
|
for(i = 0; i < 3; i++) { |
256 |
|
for (j = 0; j < 3; j++) { |
257 |
|
k = 3*i + j; |
258 |
< |
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
258 |
> |
press[i][j] = p_global[k] / volume; |
259 |
|
|
260 |
|
} |
261 |
|
} |
264 |
|
void Thermo::velocitize() { |
265 |
|
|
266 |
|
double aVel[3], aJ[3], I[3][3]; |
267 |
< |
int i, j, vr, vd; // velocity randomizer loop counters |
267 |
> |
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
268 |
|
double vdrift[3]; |
269 |
|
double vbar; |
270 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
271 |
|
double av2; |
272 |
|
double kebar; |
266 |
– |
int n_atoms; |
267 |
– |
Atom** atoms; |
268 |
– |
DirectionalAtom* dAtom; |
273 |
|
double temperature; |
274 |
< |
int n_oriented; |
271 |
< |
int n_constraints; |
274 |
> |
int nobj; |
275 |
|
|
276 |
< |
atoms = info->atoms; |
277 |
< |
n_atoms = info->n_atoms; |
276 |
> |
nobj = info->integrableObjects.size(); |
277 |
> |
|
278 |
|
temperature = info->target_temp; |
276 |
– |
n_oriented = info->n_oriented; |
277 |
– |
n_constraints = info->n_constraints; |
279 |
|
|
280 |
|
kebar = kb * temperature * (double)info->ndfRaw / |
281 |
|
( 2.0 * (double)info->ndf ); |
282 |
|
|
283 |
< |
for(vr = 0; vr < n_atoms; vr++){ |
283 |
> |
for(vr = 0; vr < nobj; vr++){ |
284 |
|
|
285 |
|
// uses equipartition theory to solve for vbar in angstrom/fs |
286 |
|
|
287 |
< |
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
287 |
> |
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
288 |
|
vbar = sqrt( av2 ); |
289 |
< |
|
289 |
< |
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
290 |
< |
|
289 |
> |
|
290 |
|
// picks random velocities from a gaussian distribution |
291 |
|
// centered on vbar |
292 |
|
|
293 |
|
for (j=0; j<3; j++) |
294 |
|
aVel[j] = vbar * gaussStream->getGaussian(); |
295 |
|
|
296 |
< |
atoms[vr]->setVel( aVel ); |
296 |
> |
info->integrableObjects[vr]->setVel( aVel ); |
297 |
> |
|
298 |
> |
if(info->integrableObjects[vr]->isDirectional()){ |
299 |
|
|
300 |
+ |
info->integrableObjects[vr]->getI( I ); |
301 |
+ |
|
302 |
+ |
if (info->integrableObjects[vr]->isLinear()) { |
303 |
+ |
|
304 |
+ |
l= info->integrableObjects[vr]->linearAxis(); |
305 |
+ |
m = (l+1)%3; |
306 |
+ |
n = (l+2)%3; |
307 |
+ |
|
308 |
+ |
aJ[l] = 0.0; |
309 |
+ |
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
310 |
+ |
aJ[m] = vbar * gaussStream->getGaussian(); |
311 |
+ |
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
312 |
+ |
aJ[n] = vbar * gaussStream->getGaussian(); |
313 |
+ |
|
314 |
+ |
} else { |
315 |
+ |
for (j = 0 ; j < 3; j++) { |
316 |
+ |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
317 |
+ |
aJ[j] = vbar * gaussStream->getGaussian(); |
318 |
+ |
} |
319 |
+ |
} // else isLinear |
320 |
+ |
|
321 |
+ |
info->integrableObjects[vr]->setJ( aJ ); |
322 |
+ |
|
323 |
+ |
}//isDirectional |
324 |
+ |
|
325 |
|
} |
326 |
|
|
327 |
|
// Get the Center of Mass drift velocity. |
331 |
|
// Corrects for the center of mass drift. |
332 |
|
// sums all the momentum and divides by total mass. |
333 |
|
|
334 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
334 |
> |
for(vd = 0; vd < nobj; vd++){ |
335 |
|
|
336 |
< |
atoms[vd]->getVel(aVel); |
336 |
> |
info->integrableObjects[vd]->getVel(aVel); |
337 |
|
|
338 |
|
for (j=0; j < 3; j++) |
339 |
|
aVel[j] -= vdrift[j]; |
340 |
|
|
341 |
< |
atoms[vd]->setVel( aVel ); |
341 |
> |
info->integrableObjects[vd]->setVel( aVel ); |
342 |
|
} |
317 |
– |
if( n_oriented ){ |
318 |
– |
|
319 |
– |
for( i=0; i<n_atoms; i++ ){ |
320 |
– |
|
321 |
– |
if( atoms[i]->isDirectional() ){ |
322 |
– |
|
323 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
324 |
– |
dAtom->getI( I ); |
325 |
– |
|
326 |
– |
for (j = 0 ; j < 3; j++) { |
343 |
|
|
328 |
– |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
329 |
– |
aJ[j] = vbar * gaussStream->getGaussian(); |
330 |
– |
|
331 |
– |
} |
332 |
– |
|
333 |
– |
dAtom->setJ( aJ ); |
334 |
– |
|
335 |
– |
} |
336 |
– |
} |
337 |
– |
} |
344 |
|
} |
345 |
|
|
346 |
|
void Thermo::getCOMVel(double vdrift[3]){ |
348 |
|
double mtot, mtot_local; |
349 |
|
double aVel[3], amass; |
350 |
|
double vdrift_local[3]; |
351 |
< |
int vd, n_atoms, j; |
352 |
< |
Atom** atoms; |
351 |
> |
int vd, j; |
352 |
> |
int nobj; |
353 |
|
|
354 |
< |
// We are very careless here with the distinction between n_atoms and n_local |
349 |
< |
// We should really fix this before someone pokes an eye out. |
354 |
> |
nobj = info->integrableObjects.size(); |
355 |
|
|
351 |
– |
n_atoms = info->n_atoms; |
352 |
– |
atoms = info->atoms; |
353 |
– |
|
356 |
|
mtot_local = 0.0; |
357 |
|
vdrift_local[0] = 0.0; |
358 |
|
vdrift_local[1] = 0.0; |
359 |
|
vdrift_local[2] = 0.0; |
360 |
|
|
361 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
361 |
> |
for(vd = 0; vd < nobj; vd++){ |
362 |
|
|
363 |
< |
amass = atoms[vd]->getMass(); |
364 |
< |
atoms[vd]->getVel( aVel ); |
363 |
> |
amass = info->integrableObjects[vd]->getMass(); |
364 |
> |
info->integrableObjects[vd]->getVel( aVel ); |
365 |
|
|
366 |
|
for(j = 0; j < 3; j++) |
367 |
|
vdrift_local[j] += aVel[j] * amass; |
390 |
|
double mtot, mtot_local; |
391 |
|
double aPos[3], amass; |
392 |
|
double COM_local[3]; |
393 |
< |
int i, n_atoms, j; |
394 |
< |
Atom** atoms; |
393 |
> |
int i, j; |
394 |
> |
int nobj; |
395 |
|
|
394 |
– |
// We are very careless here with the distinction between n_atoms and n_local |
395 |
– |
// We should really fix this before someone pokes an eye out. |
396 |
– |
|
397 |
– |
n_atoms = info->n_atoms; |
398 |
– |
atoms = info->atoms; |
399 |
– |
|
396 |
|
mtot_local = 0.0; |
397 |
|
COM_local[0] = 0.0; |
398 |
|
COM_local[1] = 0.0; |
399 |
|
COM_local[2] = 0.0; |
400 |
< |
|
401 |
< |
for(i = 0; i < n_atoms; i++){ |
400 |
> |
|
401 |
> |
nobj = info->integrableObjects.size(); |
402 |
> |
for(i = 0; i < nobj; i++){ |
403 |
|
|
404 |
< |
amass = atoms[i]->getMass(); |
405 |
< |
atoms[i]->getPos( aPos ); |
404 |
> |
amass = info->integrableObjects[i]->getMass(); |
405 |
> |
info->integrableObjects[i]->getPos( aPos ); |
406 |
|
|
407 |
|
for(j = 0; j < 3; j++) |
408 |
|
COM_local[j] += aPos[j] * amass; |
424 |
|
COM[i] = COM[i] / mtot; |
425 |
|
} |
426 |
|
} |
427 |
+ |
|
428 |
+ |
void Thermo::removeCOMdrift() { |
429 |
+ |
double vdrift[3], aVel[3]; |
430 |
+ |
int vd, j, nobj; |
431 |
+ |
|
432 |
+ |
nobj = info->integrableObjects.size(); |
433 |
+ |
|
434 |
+ |
// Get the Center of Mass drift velocity. |
435 |
+ |
|
436 |
+ |
getCOMVel(vdrift); |
437 |
+ |
|
438 |
+ |
// Corrects for the center of mass drift. |
439 |
+ |
// sums all the momentum and divides by total mass. |
440 |
+ |
|
441 |
+ |
for(vd = 0; vd < nobj; vd++){ |
442 |
+ |
|
443 |
+ |
info->integrableObjects[vd]->getVel(aVel); |
444 |
+ |
|
445 |
+ |
for (j=0; j < 3; j++) |
446 |
+ |
aVel[j] -= vdrift[j]; |
447 |
+ |
|
448 |
+ |
info->integrableObjects[vd]->setVel( aVel ); |
449 |
+ |
} |
450 |
+ |
} |