1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
|
#include <iostream> |
3 |
|
using namespace std; |
4 |
|
|
10 |
|
#include "SRI.hpp" |
11 |
|
#include "Integrator.hpp" |
12 |
|
#include "simError.h" |
13 |
+ |
#include "MatVec3.h" |
14 |
|
|
15 |
|
#ifdef IS_MPI |
16 |
|
#define __C |
17 |
|
#include "mpiSimulation.hpp" |
18 |
|
#endif // is_mpi |
19 |
|
|
20 |
+ |
inline double roundMe( double x ){ |
21 |
+ |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
22 |
+ |
} |
23 |
+ |
|
24 |
|
Thermo::Thermo( SimInfo* the_info ) { |
25 |
|
info = the_info; |
26 |
|
int baseSeed = the_info->getSeed(); |
38 |
|
double kinetic; |
39 |
|
double amass; |
40 |
|
double aVel[3], aJ[3], I[3][3]; |
41 |
< |
int j, kl; |
41 |
> |
int i, j, k, kl; |
42 |
|
|
38 |
– |
DirectionalAtom *dAtom; |
39 |
– |
|
40 |
– |
int n_atoms; |
43 |
|
double kinetic_global; |
44 |
< |
Atom** atoms; |
43 |
< |
|
44 |
> |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
45 |
|
|
45 |
– |
n_atoms = info->n_atoms; |
46 |
– |
atoms = info->atoms; |
47 |
– |
|
46 |
|
kinetic = 0.0; |
47 |
|
kinetic_global = 0.0; |
50 |
– |
for( kl=0; kl < n_atoms; kl++ ){ |
51 |
– |
|
52 |
– |
atoms[kl]->getVel(aVel); |
53 |
– |
amass = atoms[kl]->getMass(); |
54 |
– |
|
55 |
– |
for (j=0; j < 3; j++) |
56 |
– |
kinetic += amass * aVel[j] * aVel[j]; |
48 |
|
|
49 |
< |
if( atoms[kl]->isDirectional() ){ |
50 |
< |
|
51 |
< |
dAtom = (DirectionalAtom *)atoms[kl]; |
49 |
> |
for (kl=0; kl<integrableObjects.size(); kl++) { |
50 |
> |
integrableObjects[kl]->getVel(aVel); |
51 |
> |
amass = integrableObjects[kl]->getMass(); |
52 |
|
|
53 |
< |
dAtom->getJ( aJ ); |
54 |
< |
dAtom->getI( I ); |
55 |
< |
|
56 |
< |
for (j=0; j<3; j++) |
57 |
< |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
58 |
< |
|
59 |
< |
} |
53 |
> |
for(j=0; j<3; j++) |
54 |
> |
kinetic += amass*aVel[j]*aVel[j]; |
55 |
> |
|
56 |
> |
if (integrableObjects[kl]->isDirectional()){ |
57 |
> |
|
58 |
> |
integrableObjects[kl]->getJ( aJ ); |
59 |
> |
integrableObjects[kl]->getI( I ); |
60 |
> |
|
61 |
> |
if (integrableObjects[kl]->isLinear()) { |
62 |
> |
i = integrableObjects[kl]->linearAxis(); |
63 |
> |
j = (i+1)%3; |
64 |
> |
k = (i+2)%3; |
65 |
> |
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
66 |
> |
} else { |
67 |
> |
for (j=0; j<3; j++) |
68 |
> |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
69 |
> |
} |
70 |
> |
} |
71 |
|
} |
72 |
|
#ifdef IS_MPI |
73 |
|
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
74 |
|
MPI_SUM, MPI_COMM_WORLD); |
75 |
|
kinetic = kinetic_global; |
76 |
|
#endif //is_mpi |
77 |
< |
|
77 |
> |
|
78 |
|
kinetic = kinetic * 0.5 / e_convert; |
79 |
|
|
80 |
|
return kinetic; |
106 |
|
potential = potential_local; |
107 |
|
#endif // is_mpi |
108 |
|
|
107 |
– |
#ifdef IS_MPI |
108 |
– |
/* |
109 |
– |
std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
110 |
– |
*/ |
111 |
– |
#endif |
112 |
– |
|
109 |
|
return potential; |
110 |
|
} |
111 |
|
|
121 |
|
|
122 |
|
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
123 |
|
double temperature; |
124 |
< |
|
124 |
> |
|
125 |
|
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
126 |
|
return temperature; |
127 |
|
} |
128 |
|
|
133 |
– |
double Thermo::getEnthalpy() { |
134 |
– |
|
135 |
– |
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
136 |
– |
double u, p, v; |
137 |
– |
double press[3][3]; |
138 |
– |
|
139 |
– |
u = this->getTotalE(); |
140 |
– |
|
141 |
– |
this->getPressureTensor(press); |
142 |
– |
p = (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
143 |
– |
|
144 |
– |
v = this->getVolume(); |
145 |
– |
|
146 |
– |
return (u + (p*v)/e_convert); |
147 |
– |
} |
148 |
– |
|
129 |
|
double Thermo::getVolume() { |
130 |
|
|
131 |
|
return info->boxVol; |
200 |
|
const double e_convert = 4.184e-4; |
201 |
|
|
202 |
|
double molmass, volume; |
203 |
< |
double vcom[3]; |
203 |
> |
double vcom[3], pcom[3], fcom[3], scaled[3]; |
204 |
|
double p_local[9], p_global[9]; |
205 |
|
int i, j, k, nMols; |
206 |
|
Molecule* molecules; |
215 |
|
p_global[i] = 0.0; |
216 |
|
} |
217 |
|
|
218 |
< |
for (i=0; i < nMols; i++) { |
239 |
< |
molmass = molecules[i].getCOMvel(vcom); |
218 |
> |
for (i=0; i < info->integrableObjects.size(); i++) { |
219 |
|
|
220 |
+ |
molmass = info->integrableObjects[i]->getMass(); |
221 |
+ |
|
222 |
+ |
info->integrableObjects[i]->getVel(vcom); |
223 |
+ |
info->integrableObjects[i]->getPos(pcom); |
224 |
+ |
info->integrableObjects[i]->getFrc(fcom); |
225 |
+ |
|
226 |
+ |
matVecMul3(info->HmatInv, pcom, scaled); |
227 |
+ |
|
228 |
+ |
for(j=0; j<3; j++) |
229 |
+ |
scaled[j] -= roundMe(scaled[j]); |
230 |
+ |
|
231 |
+ |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
232 |
+ |
|
233 |
+ |
matVecMul3(info->Hmat, scaled, pcom); |
234 |
+ |
|
235 |
|
p_local[0] += molmass * (vcom[0] * vcom[0]); |
236 |
|
p_local[1] += molmass * (vcom[0] * vcom[1]); |
237 |
|
p_local[2] += molmass * (vcom[0] * vcom[2]); |
241 |
|
p_local[6] += molmass * (vcom[2] * vcom[0]); |
242 |
|
p_local[7] += molmass * (vcom[2] * vcom[1]); |
243 |
|
p_local[8] += molmass * (vcom[2] * vcom[2]); |
244 |
+ |
|
245 |
|
} |
246 |
|
|
247 |
|
// Get total for entire system from MPI. |
260 |
|
for (j = 0; j < 3; j++) { |
261 |
|
k = 3*i + j; |
262 |
|
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
268 |
– |
|
263 |
|
} |
264 |
|
} |
265 |
|
} |
267 |
|
void Thermo::velocitize() { |
268 |
|
|
269 |
|
double aVel[3], aJ[3], I[3][3]; |
270 |
< |
int i, j, vr, vd; // velocity randomizer loop counters |
270 |
> |
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
271 |
|
double vdrift[3]; |
272 |
|
double vbar; |
273 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
274 |
|
double av2; |
275 |
|
double kebar; |
282 |
– |
int n_atoms; |
283 |
– |
Atom** atoms; |
284 |
– |
DirectionalAtom* dAtom; |
276 |
|
double temperature; |
277 |
< |
int n_oriented; |
287 |
< |
int n_constraints; |
277 |
> |
int nobj; |
278 |
|
|
279 |
< |
atoms = info->atoms; |
280 |
< |
n_atoms = info->n_atoms; |
279 |
> |
nobj = info->integrableObjects.size(); |
280 |
> |
|
281 |
|
temperature = info->target_temp; |
292 |
– |
n_oriented = info->n_oriented; |
293 |
– |
n_constraints = info->n_constraints; |
282 |
|
|
283 |
|
kebar = kb * temperature * (double)info->ndfRaw / |
284 |
|
( 2.0 * (double)info->ndf ); |
285 |
|
|
286 |
< |
for(vr = 0; vr < n_atoms; vr++){ |
286 |
> |
for(vr = 0; vr < nobj; vr++){ |
287 |
|
|
288 |
|
// uses equipartition theory to solve for vbar in angstrom/fs |
289 |
|
|
290 |
< |
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
290 |
> |
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
291 |
|
vbar = sqrt( av2 ); |
292 |
< |
|
305 |
< |
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
306 |
< |
|
292 |
> |
|
293 |
|
// picks random velocities from a gaussian distribution |
294 |
|
// centered on vbar |
295 |
|
|
296 |
|
for (j=0; j<3; j++) |
297 |
|
aVel[j] = vbar * gaussStream->getGaussian(); |
298 |
|
|
299 |
< |
atoms[vr]->setVel( aVel ); |
299 |
> |
info->integrableObjects[vr]->setVel( aVel ); |
300 |
> |
|
301 |
> |
if(info->integrableObjects[vr]->isDirectional()){ |
302 |
|
|
303 |
+ |
info->integrableObjects[vr]->getI( I ); |
304 |
+ |
|
305 |
+ |
if (info->integrableObjects[vr]->isLinear()) { |
306 |
+ |
|
307 |
+ |
l= info->integrableObjects[vr]->linearAxis(); |
308 |
+ |
m = (l+1)%3; |
309 |
+ |
n = (l+2)%3; |
310 |
+ |
|
311 |
+ |
aJ[l] = 0.0; |
312 |
+ |
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
313 |
+ |
aJ[m] = vbar * gaussStream->getGaussian(); |
314 |
+ |
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
315 |
+ |
aJ[n] = vbar * gaussStream->getGaussian(); |
316 |
+ |
|
317 |
+ |
} else { |
318 |
+ |
for (j = 0 ; j < 3; j++) { |
319 |
+ |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
320 |
+ |
aJ[j] = vbar * gaussStream->getGaussian(); |
321 |
+ |
} |
322 |
+ |
} // else isLinear |
323 |
+ |
|
324 |
+ |
info->integrableObjects[vr]->setJ( aJ ); |
325 |
+ |
|
326 |
+ |
}//isDirectional |
327 |
+ |
|
328 |
|
} |
329 |
|
|
330 |
|
// Get the Center of Mass drift velocity. |
334 |
|
// Corrects for the center of mass drift. |
335 |
|
// sums all the momentum and divides by total mass. |
336 |
|
|
337 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
337 |
> |
for(vd = 0; vd < nobj; vd++){ |
338 |
|
|
339 |
< |
atoms[vd]->getVel(aVel); |
339 |
> |
info->integrableObjects[vd]->getVel(aVel); |
340 |
|
|
341 |
|
for (j=0; j < 3; j++) |
342 |
|
aVel[j] -= vdrift[j]; |
343 |
|
|
344 |
< |
atoms[vd]->setVel( aVel ); |
344 |
> |
info->integrableObjects[vd]->setVel( aVel ); |
345 |
|
} |
333 |
– |
if( n_oriented ){ |
334 |
– |
|
335 |
– |
for( i=0; i<n_atoms; i++ ){ |
336 |
– |
|
337 |
– |
if( atoms[i]->isDirectional() ){ |
338 |
– |
|
339 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
340 |
– |
dAtom->getI( I ); |
341 |
– |
|
342 |
– |
for (j = 0 ; j < 3; j++) { |
346 |
|
|
344 |
– |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
345 |
– |
aJ[j] = vbar * gaussStream->getGaussian(); |
346 |
– |
|
347 |
– |
} |
348 |
– |
|
349 |
– |
dAtom->setJ( aJ ); |
350 |
– |
|
351 |
– |
} |
352 |
– |
} |
353 |
– |
} |
347 |
|
} |
348 |
|
|
349 |
|
void Thermo::getCOMVel(double vdrift[3]){ |
351 |
|
double mtot, mtot_local; |
352 |
|
double aVel[3], amass; |
353 |
|
double vdrift_local[3]; |
354 |
< |
int vd, n_atoms, j; |
355 |
< |
Atom** atoms; |
354 |
> |
int vd, j; |
355 |
> |
int nobj; |
356 |
|
|
357 |
< |
// We are very careless here with the distinction between n_atoms and n_local |
365 |
< |
// We should really fix this before someone pokes an eye out. |
357 |
> |
nobj = info->integrableObjects.size(); |
358 |
|
|
367 |
– |
n_atoms = info->n_atoms; |
368 |
– |
atoms = info->atoms; |
369 |
– |
|
359 |
|
mtot_local = 0.0; |
360 |
|
vdrift_local[0] = 0.0; |
361 |
|
vdrift_local[1] = 0.0; |
362 |
|
vdrift_local[2] = 0.0; |
363 |
|
|
364 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
364 |
> |
for(vd = 0; vd < nobj; vd++){ |
365 |
|
|
366 |
< |
amass = atoms[vd]->getMass(); |
367 |
< |
atoms[vd]->getVel( aVel ); |
366 |
> |
amass = info->integrableObjects[vd]->getMass(); |
367 |
> |
info->integrableObjects[vd]->getVel( aVel ); |
368 |
|
|
369 |
|
for(j = 0; j < 3; j++) |
370 |
|
vdrift_local[j] += aVel[j] * amass; |
393 |
|
double mtot, mtot_local; |
394 |
|
double aPos[3], amass; |
395 |
|
double COM_local[3]; |
396 |
< |
int i, n_atoms, j; |
397 |
< |
Atom** atoms; |
396 |
> |
int i, j; |
397 |
> |
int nobj; |
398 |
|
|
410 |
– |
// We are very careless here with the distinction between n_atoms and n_local |
411 |
– |
// We should really fix this before someone pokes an eye out. |
412 |
– |
|
413 |
– |
n_atoms = info->n_atoms; |
414 |
– |
atoms = info->atoms; |
415 |
– |
|
399 |
|
mtot_local = 0.0; |
400 |
|
COM_local[0] = 0.0; |
401 |
|
COM_local[1] = 0.0; |
402 |
|
COM_local[2] = 0.0; |
403 |
< |
|
404 |
< |
for(i = 0; i < n_atoms; i++){ |
403 |
> |
|
404 |
> |
nobj = info->integrableObjects.size(); |
405 |
> |
for(i = 0; i < nobj; i++){ |
406 |
|
|
407 |
< |
amass = atoms[i]->getMass(); |
408 |
< |
atoms[i]->getPos( aPos ); |
407 |
> |
amass = info->integrableObjects[i]->getMass(); |
408 |
> |
info->integrableObjects[i]->getPos( aPos ); |
409 |
|
|
410 |
|
for(j = 0; j < 3; j++) |
411 |
|
COM_local[j] += aPos[j] * amass; |
427 |
|
COM[i] = COM[i] / mtot; |
428 |
|
} |
429 |
|
} |
430 |
+ |
|
431 |
+ |
void Thermo::removeCOMdrift() { |
432 |
+ |
double vdrift[3], aVel[3]; |
433 |
+ |
int vd, j, nobj; |
434 |
+ |
|
435 |
+ |
nobj = info->integrableObjects.size(); |
436 |
+ |
|
437 |
+ |
// Get the Center of Mass drift velocity. |
438 |
+ |
|
439 |
+ |
getCOMVel(vdrift); |
440 |
+ |
|
441 |
+ |
// Corrects for the center of mass drift. |
442 |
+ |
// sums all the momentum and divides by total mass. |
443 |
+ |
|
444 |
+ |
for(vd = 0; vd < nobj; vd++){ |
445 |
+ |
|
446 |
+ |
info->integrableObjects[vd]->getVel(aVel); |
447 |
+ |
|
448 |
+ |
for (j=0; j < 3; j++) |
449 |
+ |
aVel[j] -= vdrift[j]; |
450 |
+ |
|
451 |
+ |
info->integrableObjects[vd]->setVel( aVel ); |
452 |
+ |
} |
453 |
+ |
} |